National Astronomical Observatory of Japan



Tracing the Cosmic Web with Star-forming Galaxies in the Distant Universe

| Science

Figure: A close-up view of the cluster of galaxies observed.
A close-up view of the cluster of galaxies observed. The image is a compotie of the i-band data (in red) from the Hyper Suprime-Cam at the Subaru Telescope and R-band (in green) and V-band (in blue) images from the Mayall 4-m telescope at the Kitt Peak National Observatory of National Optical Astronomy Observatory. Contour lines show the mass distribution. Red and blue circles show galaxies that stopped star formation and galaxies with star formation, respectively. The research team was able to study the evolution of the large scale structure in the Universe by comparing the mass distribution in the Universe and the distribution of the galaxies.

A research group led by Hiroshima University has revealed a picture of the increasing fraction of massive star-forming galaxies in the distant universe. Massive star-forming galaxies in the distant universe, about 5 billion years ago, trace large-scale structure in the universe. In the nearby universe, about 3 billion years ago, massive star-forming galaxies are not apparent. This change in the way star-forming galaxies trace the matter distribution is consistent with the picture of galaxy evolution established by other independent studies.

The research team provides a new window on galaxy evolution by comparing the three-dimensional galaxy distribution mapped with a redshift survey including star-forming galaxies to a weak lensing map based on Subaru imaging.

“It turns out that the contribution of star-forming galaxies as tracers of the mass distribution in the distant universe is not negligible,” said Dr. Utsumi. “The HSC weak lensing map should contain signals from more distant galaxies in the 8 billion-year-old universe. Deeper redshift surveys combined with similar weak lensing maps should reveal an even greater contribution of star-forming galaxies as tracers of the matter distribution in this higher redshift range. Using the next generation spectrograph for the Subaru Telescope, Prime Focus Spectrograph (PFS), we hope to extend our maps to the interesting era.”

This research is published in the Astrophysical Journal in its December 14, 2016 on-line version and December 20, 2016 in the printed version, Volume 833, Number 2. The title of the paper is “A weak lensing view of the downsizing of star-forming galaxies” by Y. Utsumi et al.

Related Links