ドップラー振動撮像装置を用いた 木星自由振動観測 内部構造と起源の解明に向けて

生駒大洋

東京大学大学院理学系研究科

共同研究者:佐藤文衛,井田茂 (東エ大),T. Guillot (OCA) JOVIAL チーム

木星内部構造

Envelope

composed of "heavy elements" that were present in a proto-solar disk in the form of ice and rock

Figure from Guillot & Gautier (2014)

木星内部の不明な点

- 中心に高密度コアは存在するの
 か?その大きさは?

- ◎ 水素とヘリウムの分布に偏りは
 あるのか?

Envelope

composed of H & He and a small fraction of heavy elements

composed of "heavy elements" that were present in a proto-solar disk in the form of ice and rock

従来の内部構造の推定法

重力ポテンシャル $\Phi = -\frac{GM}{r} \left[1 - \sum_{n=1}^{\infty} \left(\frac{R_e}{r} \right)^{2n} J_{2n} P_{2n}(\cos \theta) \right]$ 重力モーメント $J_{2n} = \frac{-1}{MR_e^{2n}(4n+1)^{1/2}} \int P_{2n}(\cos \theta) r^{2n} \rho(\mathbf{r}) d^3 r$

従来の内部構造の推定法:コア質量

● コア質量に大きな不定性あり ● エンベロープに含まれる重元素量にも大きな不定性

木星型惑星形成モデル

木星形成過程の解明にはコア質量が鍵となる

超高圧物性の不明点

分子水素→金属水素への転移の仕方および場所が不明

超高圧物性の不明点

内部をもっと直接見たい

折返点の位置・音速と方位量子数の関係

 $\frac{c_{\rm s}^2(r_{\rm t})}{r_{\rm t}^2} = \frac{4\pi^2\nu^2}{\ell(\ell+1)}$

木震学:理論モデル

3.5 3 2.5 2 1.5 1					$\bigcirc \bigcirc $
0.5) @ @ @ @ @ @ }	0-A-0-0-6		9- 0 -0-0 -
0	0 5	5 10) <u>1</u> !	5 20	25

SYMPA Project

Seismographic Imaging Interferometer for Monitoring Planetary Atmospheres

Gaulme+ 2011

Jovian Oscillations through radial Velocimetry ImAging observations at several Longitudes

JOVIAL ネットワーク

Goal: Simultaneous observations from 3 sites Target: Duty-cycle > 50 % over two weeks

Observatoire de Calern (France)

- C2PU: 1 m telescope with DSI prototype New Mexico (USA)
- ²⁰¹⁷ Dunn Solar telescope (Sacramento Peak)
 Okayama Observatory (Japan)
- 2018 1.88 m telescope
 - Backup: Ishigaki observatory (1m telescope)

The JOVIAL Team

Organisation	Last name	First name	Current position	Involvement (Man-Month)	Contribution to the project
Laboratoire Lagrange	Schmider	François-Xavier	Directeur de Recherche	24	Principal Investigator
Laboratoire Lagrange	Guillot	Tristan	Directeur de Recherche	12	Science Team Leader, Internal structure and evolution model
Laboratoire Lagrange	Goncalves	Ivan	Doctorant	18	Data processing
Laboratoire Lagrange	Mekarnia	Djamel	Chargé de Recherche	6	Observation and data processing
Laboratoire Lagrange	Bresson	Yves	Ingénieur d'Etudes	10	Optical studies, tests
Laboratoire Lagrange	Preis	Olivier	Ingénieur d'Etudes	12	Project Manager
Laboratoire Lagrange	Dejonghe	Julien	Ingénieur d'Etudes	12	Mechanical studies and integration
Institut d'Astrophysique Spatiale	Appourchaux	Thierry	Directeur de Recherche	24	Partner n°2 Leader Data analysis
Institut d'Astrophysique Spatiale	Baudin	Frédéric	Astronome	10	Data analysis
Institut d'Astrophysique Spatiale	Boumier	Patrick	Chargé de Recherche	6	Instrumental expertise
Institut d'Astrophysique Spatiale	Le Clec'h	Jean-Christophe	Ingénieur d'Etudes	4	Thermal control study
Institut d'Astrophysique Spatiale	Morinaud	Gilles	Ingénieur de Recherche	4	Vacuum tank study
Institut d'Astrophysique Spatiale	Ballans	Hervé	Ingénieur de Recherche	12	Data analysis and archiving
NMSU	Gaulme	Patrick	Astronomer	9	Commissioning and operation
NMSU	Jackiewicz	Jason	Professor	9	Seismic model
NMSU	Voelz	David	Professor	6	Optical interface
NMSU	Underwood	Tom	PHD student	12	Instrument control software
Tokyo Inst. Of Technology	Sato	Bu'nei	Associate Professor	6	Coordination of the Okayama observations
Tokyo Inst. Of Technology/ELSI	Ida	Shigeru	Full Professor	4	Science Interpretation: Solar System formation models
University of Tokyo	Ikoma	Masahiro	Associate Professor	6	Science Interpretation: Interior models

lshigaki

Okayama

観測期間

Doppler Spectro-Imager (DSI)

- ●木星表面で反射された太陽スペクトルの ドップラーシフトを測定
- Mach-Zehnder 干渉計
- 位相が90度ずつずれた4つの干渉像から 時々刻々の位相変化を測定
 - → 木星表面各点の速度変化
- 一 ノイズレベル < 4cm/s in 2 weeks (photon noise)
 </p>
 - ・On sky で ~3 cm/s (in 2.5夜) を達成 ・速度精度は ~ 20m/s/" in 1h (2014年1月時点)

300

200

400

500 600 700

800

900

設置予定場所

●クーデ焦点 (クーデ室内) ●HIDESと干渉しないようにする ドーム ●今年7月にフランスチームが 現地視察.泉浦さん・神戸さん カセグレン焦点 を交えて議論 OASIS カセグレン分光器 クーデ焦点 南ピア バランスウェイト HIDES 昇隆床 待機室 中央機械室 測定室 廊下 直空蒸着室 1111111

図2-1 188cm反射望遠鏡ドーム概略図

通風口

ニュートン焦点

北ピア-

通風□

Н

地面

まとめ

- 本星内部の組成分布には不明な点が多く、 それが木星の起源・進化の理解を妨げている
- 重力場観測に基づいた現行の内部構造推定法では、深部の情報は取れない
 星震学の手法を木星に適用すること(木震学)で、深部の組成情報を得ることができる
 188cmを用いたネットワーク観測 (JOVIAL)を提案したい