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背景	
•  中質量巨星を対象としたRVサーベイが精力的に行われ、

多くの巨星周りの系外惑星が発見されてきている     
(e.g. Sato+2013, Lee+2013) 

•  巨星周りの惑星は太陽型周りの惑星と異なる特徴が明ら
かになった 
o  恒星質量と巨大惑星頻度に正の相関がある (Johnson+2010) 
o  中質量星周りでは短周期惑星が欠乏している (Sato+2008) 
o  Etc… 

² 一般的な惑星形成論の構築に巨星周りの惑星探しは重要
であるが、巨星の質量不定性という問題がある 



巨星の質量推定	
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l  Takeda+2008のサンプルは巨星
域のレッドクランプ領域にあ
り、エラーバーの範囲に多く
の進化トラックが存在	
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統計的な質量推定の不定性	
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•  質量推定に関して通常の統計的手法の限界 
 ⇒観測的に恒星質量を求めたい 

 
•  本研究の目的 

星震学を用いた観測的な巨星の質量推定を試みる 

目的	
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•  準巨星β Hyi (Bedding+2001)、矮星α CenA 
(Butler+2004)で太陽の５分振動に相当するものを観
測  

•  パワースペクトルは点光源の星をトータルライトで
観測したことに相当 
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Fig. 6.—Power spectrum of the combined velocity time series. The inset
shows the spectral window, with the frequency scale expanded by a factor
of 10.

TABLE 1
Noise Levels from Observations of Solar-like Oscillations

Star Spectrograph
Precision per Minute

(m s )!1 Reference

Sun . . . . . . . . . . . BiSON 0.2 1
a Cen A . . . . . . UVES 0.42 2
Sun . . . . . . . . . . . GOLF 0.6 3
a Cen A . . . . . . UCLES 1.0 2
a Cen B . . . . . . CORALIE 1.7 4
a Cen A . . . . . . CORALIE 1.7 5
Procyon . . . . . . . ELODIE 2.5 6

CORALIE 2.7 7
b Hyi . . . . . . . . . UCLES 3.0 8

CORALIE 4.2 9
Procyon . . . . . . . AFOE 4.2 10

FOE 4.7 11
HIDES 5.1 12

Note.—BiSON p Birmingham Solar Oscillations Network;
GOLFp Global Oscillations at Low Frequencies; AFOEp Advanced
Fiber-Optic Echelle; FOE p Fiber Optic Echelle; HIDES p High
Dispersion Echelle Spectrograph.

References.—(1) Data supplied byW. Chaplin; (2) this Letter; (3) data
from the GOLFWeb site (http://www.medoc-ias.u-psud.fr/golf); (4) Carrier
& Bourban 2003; (5) Bouchy & Carrier 2002; (6) Martic et al. 1999;
(7) Carrier et al. 2002; (8) Bedding et al. 2001; (9) Carrier et al. 2001;
(10) Brown 2000; (11) Brown et al. 1991; (12) Kambe et al. 2003.

the noise level reported from CORALIE observations of a Cen
A was 4.3 cm s (Bouchy & Carrier 2002), while observations!1

of a Cen B gave 3.75 cm s (Carrier & Bourban 2003).!1

We can also calculate the precision per minute of observing
time, which is shown in Table 1. For comparison, we include
velocity precision from other oscillation measurements. The
list is not meant to be exhaustive, but most of the instruments
that have been used in recent years are represented. The pre-
cision depends, of course, on several factors, such as the tele-
scope aperture, target brightness, observing duty cycle, spec-
trograph stability, and method of wavelength calibration. It is
clear that the observations reported here, particularly those with
UVES, are significantly more precise than any previous mea-
surements of stars other than the Sun. Of course, we refer here
to the precision at frequencies above ∼0.8 mHz, which is the
regime of interest for oscillations in solar-type stars.
The referee has questioned whether adjusting the weights

using the method described above might have affected the ac-
curacy with which the oscillation frequencies can be measured.
To test this, we have extracted the 10 highest peaks from both
the power spectrum in Figure 6 and the power spectrum ob-
tained without adjusting the weights. The frequencies of all 10
peaks agreed very well, with a mean difference of 0.11 mHz
and a maximum difference of 0.4 mHz. The latter is a factor
of 10 smaller than the FWHM of the spectral window and
probably well below the natural line width of the modes. There-
fore, there is no reason to think that the reduction in the noise
level obtained by adjusting weights has come at the expense
of reduced accuracy in the measured frequencies.

4. CONCLUSION
We have analyzed differential radial velocity measurements

of a Cen A made with UVES at the VLT and UCLES at the

AAT. Stellar oscillations are clearly visible in the time series.
Slow drifts and sudden jumps of a few meters per second,
presumably instrumental, were removed from each time series
using a high-pass filter. We then used the measurement uncer-
tainties as weights in calculating the power spectrum, but we
found it necessary to modify some of the weights to account
for a small fraction of bad data points. In the end, we reached
a noise floor of 1.9 cm s in the amplitude spectrum, and in!1

a future paper we will present a full analysis of the oscillation
frequencies and a comparison with stellar models.

We thank Bill Chaplin for providing a times series that al-
lowed us to estimate the precision of BiSON observations. This
work was supported financially by the Australian Research
Council, by the Danish Natural Science Research Council, and
by the Danish National Research Foundation through its es-
tablishment of the Theoretical Astrophysics Center. We further
acknowledge support from NSF grant AST 99-88087 (RPB)
and from SUN Microsystems.
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スケーリング則	
Kjeldsen & Bedding 1995 �

観測的に質量が推定する�
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観測	

•  対象天体：HD104985 (V=5.78, G9III), 
                      HD127243 (V=5.4, K0III), 
                      HD221345 (V=5.22, K0III) 
•  観測期間：2015.9.19-28,  2016.3.17-26 
•  装置：188cm望遠鏡　HIDES(R=50000) + I2Cell 
•  中心波長域：390~750nm 
•  典型的な露出時間：800s,660s,480s 
•  典型的なS/N: ~300 
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視線速度解析	

I(λ) = k[A(λ)× S(λ +Δλ)]* IP

The Physical Society of Japan (JPS)

NII-Electronic Library Service

•  5000-6000Aのスペクトルを
用いる	

•  I2Cellを用いて恒星のスペ
クトルのドップラー効果に
よる波長のずれを読み取る�

�



質量推定	

General Lomb-Scargle Periodgram�

578 M. Zechmeister and M. Kürster: The generalised Lomb-Scargle periodogram

same way as outlined in Lomb (1976). Let yi be the N mea-
surements of a time series at time ti and with errors σi. Fitting a
full sine function (i.e. including an offset c):

y(t) = a cosωt + b sinωt + c

at given frequency ω (or period P = 2π
ω ) means to minimise

the squared difference between the data yi and the model func-
tion y(t):

χ2 =

N∑

i=1

[yi − y(ti)]2

σ2
i

= W
∑
wi[yi − y(ti)]2

where

wi =
1
W

1
σ2

i

(
W =

∑ 1
σ2

i

∑
wi = 1

)

are the normalised weights1. Minimisation leads to a system of
(three) linear equations whose solution is derived in detail in
Appendix A.1. Furthermore, it is shown in Appendix A.1 that
the relative χ2-reduction p(ω) as a function of frequency ω and
normalised to unity by χ2

0 (the χ2 for the weighted mean) can be
written as:

p(ω) =
χ2

0 − χ2(ω)

χ2
0

(4)

p(ω) =
1

YY · D
[
S S · YC2 +CC · YS 2 − 2CS · YC · YS

]
(5)

with:

D(ω) = CC · S S −CS 2 (6)

and the following abbreviations for the sums:

Y =
∑
wiyi (7)

C =
∑
wi cosωti (8)

S =
∑
wi sinωti (9)

YY = ŶY − Y · Y ŶY =
∑
wiy

2
i (10)

YC(ω) = ˆYC − Y ·C ˆYC =
∑
wiyi cosωti (11)

YS (ω) = ˆYS − Y · S ˆYS =
∑
wiyi sinωti (12)

CC(ω) = ĈC − C ·C ĈC =
∑
wi cos2 ωti (13)

S S (ω) = ˆS S − S · S ˆS S =
∑
wi sin2 ωti (14)

CS (ω) = ĈS −C · S ĈS =
∑
wi cosωti sinωti. (15)

Note that sums with hats correspond to the classical sums.
W · YY ≡ χ2

0 is simply the weighted sum of squared devia-
tions from the weighted mean. The mixed sums can also be writ-
ten as a weighted covariance Covx,y =

∑
wixiyi − X · Y/W =

E(x · y) − WE(x)E(y) where E is the expectation value, e.g.
YS = Covy,sinωt.

With the weighted mean given by y =
∑
wiyi = Y

Eqs. (10)−(12) can also be written as:

YY =
∑
wi(yi − y)2 (16)

YC(ω) =
∑
wi(yi − y) cosωti (17)

YS (ω) =
∑
wi(yi − y) sinωti. (18)

1 For clarity the bounds of the summation are suppressed in the fol-
lowing notation. They are always the same (i = 1, 2, ...,N).

So the sums YC and YS use the weighted mean subtracted data
and are calculated in the same way as for the Lomb-Scargle pe-
riodogram (but with weights).

The generalised Lomb-Scargle periodogram p(ω) in Eq. (4)
is normalised to unity and therefore in the range of 0 ≤ p ≤ 1,
with p = 0 indicating no improvement of the fit and p = 1 a
“perfect” fit (100% reduction of χ2 or χ2 = 0).

As the full sine fit is time-translation invariant, there is
also the possibility to introduce an arbitrary time reference
point τ (ti → ti − τ; now, e.g. CC =

∑
wi cos2 ω(ti − τ) −

(
∑
wi cosω(ti − τ))2), which will not affect the χ2 of the fit. If

this parameter τ is chosen as

tan 2ωτ =
2CS

CC − S S

=

∑
wi sin 2ωti−2

∑
wi cosωti

∑
wi sinωti

∑
wi cos 2ωti−

[
(
∑
wi cosωti)2−(

∑
wi sinωti)2

] (19)

the interaction term in Eq. (5) disappears, CS τ =
∑
wi cosω(ti −

τ) sinω(ti − τ) −
∑
wi cosω(ti − τ)

∑
wi sinω(ti − τ) = 0 (proof

in Appendix A.2) and in this case we append the index τ to the
time dependent sums. The parameter τ(ω) is determined by the
times ti and the measurement errors σi for each frequency ω. So
when using τ as defined in Eq. (19) the periodogram in Eq. (5)
becomes

p(ω) =
1

YY

[
YC2
τ

CCτ
+

YS 2
τ

S S τ

]
· (20)

Note that Eq. (20) has the same form as the Lomb-Scargle pe-
riodogram in Eq. (1) with the difference that the errors can be
weighted (weights wi in all sums) and that there is an additional
second term in CCτ, S S τ, CS τ and tan 2ωτ (Eqs. (13)−(15)
and (19), respectively) which accounts for the floating mean.

The computational effort is similar as for the Lomb-Scargle
periodogram. The incorporation of the offset c requires only two
additional sums for each frequency ω (namely S =

∑
wi sinωti

and C =
∑
wi cosωti or S τ and Cτ respectively). The effort is

even weaker when using Eq. (5) with keeping CS instead of us-
ing Eq. (20) with the parameter τ introduced via Eq. (19) which
needs an extra preceding loop in the algorithm. If the errors are
taken into account as weights, also the multiplication with wi
must be done.

For fast computation of the trigonometric sums the algorithm
of Press & Rybicki (1989) can be applied, which has advan-
tages in the case of large data sets and/or many frequency steps.
Another possibility are trigonometric recurrences2 as described
in Press et al. (1992). Note also that the first sum in S S can be
expressed by ˆS S = 1 − ĈC.

3. Normalisation and False-Alarm probability (FAP)

There were several discussions in the literature on how to nor-
malise the periodogram. For the detailed discussion we refer to
the key papers by Scargle (1982), Horne & Baliunas (1986),
Koen (1990) and Cumming et al. (1999). The normalisation be-
comes important for estimations of the false-alarm probability
of a signal by means of an analytic expression. Lomb (1976)
showed that if data are Gaussian noise, the terms ˆYC

2
/ĈC and

ˆYS
2
/ ˆS S in Eq. (1) are χ2-distributed and therefore the sum of

2 E.g. cosωk+1t = cos(ωk + ∆ω)t = cosωkt cos∆ωkt − sinωkt sin∆ωt
where ∆ω is the frequency step.
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∑
wiy

2
i (10)

YC(ω) = ˆYC − Y ·C ˆYC =
∑
wiyi cosωti (11)

YS (ω) = ˆYS − Y · S ˆYS =
∑
wiyi sinωti (12)
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in Appendix A.2) and in this case we append the index τ to the
time dependent sums. The parameter τ(ω) is determined by the
times ti and the measurement errors σi for each frequency ω. So
when using τ as defined in Eq. (19) the periodogram in Eq. (5)
becomes

p(ω) =
1

YY

[
YC2
τ

CCτ
+

YS 2
τ

S S τ

]
· (20)

Note that Eq. (20) has the same form as the Lomb-Scargle pe-
riodogram in Eq. (1) with the difference that the errors can be
weighted (weights wi in all sums) and that there is an additional
second term in CCτ, S S τ, CS τ and tan 2ωτ (Eqs. (13)−(15)
and (19), respectively) which accounts for the floating mean.

The computational effort is similar as for the Lomb-Scargle
periodogram. The incorporation of the offset c requires only two
additional sums for each frequency ω (namely S =

∑
wi sinωti

and C =
∑
wi cosωti or S τ and Cτ respectively). The effort is

even weaker when using Eq. (5) with keeping CS instead of us-
ing Eq. (20) with the parameter τ introduced via Eq. (19) which
needs an extra preceding loop in the algorithm. If the errors are
taken into account as weights, also the multiplication with wi
must be done.

For fast computation of the trigonometric sums the algorithm
of Press & Rybicki (1989) can be applied, which has advan-
tages in the case of large data sets and/or many frequency steps.
Another possibility are trigonometric recurrences2 as described
in Press et al. (1992). Note also that the first sum in S S can be
expressed by ˆS S = 1 − ĈC.

3. Normalisation and False-Alarm probability (FAP)

There were several discussions in the literature on how to nor-
malise the periodogram. For the detailed discussion we refer to
the key papers by Scargle (1982), Horne & Baliunas (1986),
Koen (1990) and Cumming et al. (1999). The normalisation be-
comes important for estimations of the false-alarm probability
of a signal by means of an analytic expression. Lomb (1976)
showed that if data are Gaussian noise, the terms ˆYC

2
/ĈC and

ˆYS
2
/ ˆS S in Eq. (1) are χ2-distributed and therefore the sum of

2 E.g. cosωk+1t = cos(ωk + ∆ω)t = cosωkt cos∆ωkt − sinωkt sin∆ωt
where ∆ω is the frequency step.

ti: 時刻(データ)	
yi: RV(データ)	
y(ti): 時刻tiにおける理論的RV	
wi: normalized weight �
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same way as outlined in Lomb (1976). Let yi be the N mea-
surements of a time series at time ti and with errors σi. Fitting a
full sine function (i.e. including an offset c):

y(t) = a cosωt + b sinωt + c

at given frequency ω (or period P = 2π
ω ) means to minimise

the squared difference between the data yi and the model func-
tion y(t):

χ2 =

N∑

i=1

[yi − y(ti)]2

σ2
i

= W
∑
wi[yi − y(ti)]2

where

wi =
1
W

1
σ2

i

(
W =

∑ 1
σ2

i

∑
wi = 1

)

are the normalised weights1. Minimisation leads to a system of
(three) linear equations whose solution is derived in detail in
Appendix A.1. Furthermore, it is shown in Appendix A.1 that
the relative χ2-reduction p(ω) as a function of frequency ω and
normalised to unity by χ2

0 (the χ2 for the weighted mean) can be
written as:

p(ω) =
χ2

0 − χ2(ω)

χ2
0

(4)

p(ω) =
1

YY · D
[
S S · YC2 +CC · YS 2 − 2CS · YC · YS

]
(5)

with:

D(ω) = CC · S S −CS 2 (6)

and the following abbreviations for the sums:

Y =
∑
wiyi (7)

C =
∑
wi cosωti (8)

S =
∑
wi sinωti (9)

YY = ŶY − Y · Y ŶY =
∑
wiy

2
i (10)

YC(ω) = ˆYC − Y ·C ˆYC =
∑
wiyi cosωti (11)

YS (ω) = ˆYS − Y · S ˆYS =
∑
wiyi sinωti (12)

CC(ω) = ĈC − C ·C ĈC =
∑
wi cos2 ωti (13)

S S (ω) = ˆS S − S · S ˆS S =
∑
wi sin2 ωti (14)

CS (ω) = ĈS −C · S ĈS =
∑
wi cosωti sinωti. (15)

Note that sums with hats correspond to the classical sums.
W · YY ≡ χ2

0 is simply the weighted sum of squared devia-
tions from the weighted mean. The mixed sums can also be writ-
ten as a weighted covariance Covx,y =

∑
wixiyi − X · Y/W =

E(x · y) − WE(x)E(y) where E is the expectation value, e.g.
YS = Covy,sinωt.

With the weighted mean given by y =
∑
wiyi = Y

Eqs. (10)−(12) can also be written as:

YY =
∑
wi(yi − y)2 (16)

YC(ω) =
∑
wi(yi − y) cosωti (17)

YS (ω) =
∑
wi(yi − y) sinωti. (18)

1 For clarity the bounds of the summation are suppressed in the fol-
lowing notation. They are always the same (i = 1, 2, ...,N).

So the sums YC and YS use the weighted mean subtracted data
and are calculated in the same way as for the Lomb-Scargle pe-
riodogram (but with weights).

The generalised Lomb-Scargle periodogram p(ω) in Eq. (4)
is normalised to unity and therefore in the range of 0 ≤ p ≤ 1,
with p = 0 indicating no improvement of the fit and p = 1 a
“perfect” fit (100% reduction of χ2 or χ2 = 0).

As the full sine fit is time-translation invariant, there is
also the possibility to introduce an arbitrary time reference
point τ (ti → ti − τ; now, e.g. CC =

∑
wi cos2 ω(ti − τ) −

(
∑
wi cosω(ti − τ))2), which will not affect the χ2 of the fit. If

this parameter τ is chosen as

tan 2ωτ =
2CS

CC − S S

=

∑
wi sin 2ωti−2

∑
wi cosωti

∑
wi sinωti

∑
wi cos 2ωti−

[
(
∑
wi cosωti)2−(

∑
wi sinωti)2

] (19)

the interaction term in Eq. (5) disappears, CS τ =
∑
wi cosω(ti −

τ) sinω(ti − τ) −
∑
wi cosω(ti − τ)

∑
wi sinω(ti − τ) = 0 (proof

in Appendix A.2) and in this case we append the index τ to the
time dependent sums. The parameter τ(ω) is determined by the
times ti and the measurement errors σi for each frequency ω. So
when using τ as defined in Eq. (19) the periodogram in Eq. (5)
becomes

p(ω) =
1

YY

[
YC2
τ

CCτ
+

YS 2
τ

S S τ

]
· (20)

Note that Eq. (20) has the same form as the Lomb-Scargle pe-
riodogram in Eq. (1) with the difference that the errors can be
weighted (weights wi in all sums) and that there is an additional
second term in CCτ, S S τ, CS τ and tan 2ωτ (Eqs. (13)−(15)
and (19), respectively) which accounts for the floating mean.

The computational effort is similar as for the Lomb-Scargle
periodogram. The incorporation of the offset c requires only two
additional sums for each frequency ω (namely S =

∑
wi sinωti

and C =
∑
wi cosωti or S τ and Cτ respectively). The effort is

even weaker when using Eq. (5) with keeping CS instead of us-
ing Eq. (20) with the parameter τ introduced via Eq. (19) which
needs an extra preceding loop in the algorithm. If the errors are
taken into account as weights, also the multiplication with wi
must be done.

For fast computation of the trigonometric sums the algorithm
of Press & Rybicki (1989) can be applied, which has advan-
tages in the case of large data sets and/or many frequency steps.
Another possibility are trigonometric recurrences2 as described
in Press et al. (1992). Note also that the first sum in S S can be
expressed by ˆS S = 1 − ĈC.

3. Normalisation and False-Alarm probability (FAP)

There were several discussions in the literature on how to nor-
malise the periodogram. For the detailed discussion we refer to
the key papers by Scargle (1982), Horne & Baliunas (1986),
Koen (1990) and Cumming et al. (1999). The normalisation be-
comes important for estimations of the false-alarm probability
of a signal by means of an analytic expression. Lomb (1976)
showed that if data are Gaussian noise, the terms ˆYC

2
/ĈC and

ˆYS
2
/ ˆS S in Eq. (1) are χ2-distributed and therefore the sum of

2 E.g. cosωk+1t = cos(ωk + ∆ω)t = cosωkt cos∆ωkt − sinωkt sin∆ωt
where ∆ω is the frequency step.
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same way as outlined in Lomb (1976). Let yi be the N mea-
surements of a time series at time ti and with errors σi. Fitting a
full sine function (i.e. including an offset c):

y(t) = a cosωt + b sinωt + c

at given frequency ω (or period P = 2π
ω ) means to minimise

the squared difference between the data yi and the model func-
tion y(t):

χ2 =

N∑

i=1

[yi − y(ti)]2

σ2
i

= W
∑
wi[yi − y(ti)]2

where

wi =
1
W

1
σ2

i

(
W =

∑ 1
σ2

i

∑
wi = 1

)

are the normalised weights1. Minimisation leads to a system of
(three) linear equations whose solution is derived in detail in
Appendix A.1. Furthermore, it is shown in Appendix A.1 that
the relative χ2-reduction p(ω) as a function of frequency ω and
normalised to unity by χ2

0 (the χ2 for the weighted mean) can be
written as:

p(ω) =
χ2

0 − χ2(ω)

χ2
0

(4)

p(ω) =
1

YY · D
[
S S · YC2 +CC · YS 2 − 2CS · YC · YS

]
(5)

with:

D(ω) = CC · S S −CS 2 (6)

and the following abbreviations for the sums:

Y =
∑
wiyi (7)

C =
∑
wi cosωti (8)

S =
∑
wi sinωti (9)

YY = ŶY − Y · Y ŶY =
∑
wiy

2
i (10)

YC(ω) = ˆYC − Y ·C ˆYC =
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wiyi cosωti (11)

YS (ω) = ˆYS − Y · S ˆYS =
∑
wiyi sinωti (12)

CC(ω) = ĈC − C ·C ĈC =
∑
wi cos2 ωti (13)

S S (ω) = ˆS S − S · S ˆS S =
∑
wi sin2 ωti (14)

CS (ω) = ĈS −C · S ĈS =
∑
wi cosωti sinωti. (15)

Note that sums with hats correspond to the classical sums.
W · YY ≡ χ2

0 is simply the weighted sum of squared devia-
tions from the weighted mean. The mixed sums can also be writ-
ten as a weighted covariance Covx,y =

∑
wixiyi − X · Y/W =

E(x · y) − WE(x)E(y) where E is the expectation value, e.g.
YS = Covy,sinωt.

With the weighted mean given by y =
∑
wiyi = Y

Eqs. (10)−(12) can also be written as:

YY =
∑
wi(yi − y)2 (16)

YC(ω) =
∑
wi(yi − y) cosωti (17)

YS (ω) =
∑
wi(yi − y) sinωti. (18)

1 For clarity the bounds of the summation are suppressed in the fol-
lowing notation. They are always the same (i = 1, 2, ...,N).

So the sums YC and YS use the weighted mean subtracted data
and are calculated in the same way as for the Lomb-Scargle pe-
riodogram (but with weights).

The generalised Lomb-Scargle periodogram p(ω) in Eq. (4)
is normalised to unity and therefore in the range of 0 ≤ p ≤ 1,
with p = 0 indicating no improvement of the fit and p = 1 a
“perfect” fit (100% reduction of χ2 or χ2 = 0).

As the full sine fit is time-translation invariant, there is
also the possibility to introduce an arbitrary time reference
point τ (ti → ti − τ; now, e.g. CC =

∑
wi cos2 ω(ti − τ) −

(
∑
wi cosω(ti − τ))2), which will not affect the χ2 of the fit. If

this parameter τ is chosen as

tan 2ωτ =
2CS

CC − S S

=

∑
wi sin 2ωti−2

∑
wi cosωti

∑
wi sinωti

∑
wi cos 2ωti−

[
(
∑
wi cosωti)2−(

∑
wi sinωti)2

] (19)

the interaction term in Eq. (5) disappears, CS τ =
∑
wi cosω(ti −

τ) sinω(ti − τ) −
∑
wi cosω(ti − τ)

∑
wi sinω(ti − τ) = 0 (proof

in Appendix A.2) and in this case we append the index τ to the
time dependent sums. The parameter τ(ω) is determined by the
times ti and the measurement errors σi for each frequency ω. So
when using τ as defined in Eq. (19) the periodogram in Eq. (5)
becomes

p(ω) =
1

YY

[
YC2
τ

CCτ
+

YS 2
τ

S S τ

]
· (20)

Note that Eq. (20) has the same form as the Lomb-Scargle pe-
riodogram in Eq. (1) with the difference that the errors can be
weighted (weights wi in all sums) and that there is an additional
second term in CCτ, S S τ, CS τ and tan 2ωτ (Eqs. (13)−(15)
and (19), respectively) which accounts for the floating mean.

The computational effort is similar as for the Lomb-Scargle
periodogram. The incorporation of the offset c requires only two
additional sums for each frequency ω (namely S =

∑
wi sinωti

and C =
∑
wi cosωti or S τ and Cτ respectively). The effort is

even weaker when using Eq. (5) with keeping CS instead of us-
ing Eq. (20) with the parameter τ introduced via Eq. (19) which
needs an extra preceding loop in the algorithm. If the errors are
taken into account as weights, also the multiplication with wi
must be done.

For fast computation of the trigonometric sums the algorithm
of Press & Rybicki (1989) can be applied, which has advan-
tages in the case of large data sets and/or many frequency steps.
Another possibility are trigonometric recurrences2 as described
in Press et al. (1992). Note also that the first sum in S S can be
expressed by ˆS S = 1 − ĈC.

3. Normalisation and False-Alarm probability (FAP)

There were several discussions in the literature on how to nor-
malise the periodogram. For the detailed discussion we refer to
the key papers by Scargle (1982), Horne & Baliunas (1986),
Koen (1990) and Cumming et al. (1999). The normalisation be-
comes important for estimations of the false-alarm probability
of a signal by means of an analytic expression. Lomb (1976)
showed that if data are Gaussian noise, the terms ˆYC

2
/ĈC and

ˆYS
2
/ ˆS S in Eq. (1) are χ2-distributed and therefore the sum of

2 E.g. cosωk+1t = cos(ωk + ∆ω)t = cosωkt cos∆ωkt − sinωkt sin∆ωt
where ∆ω is the frequency step.
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まとめ	

天体� Takeda+2008 � da Silva+2006 � This work�

HD104985 � 2.12 +0.05 -0.63 � 1.31 ± 0.31� 1.19 ± 0.24�

HD127243 � 1.92 +0.09 -0.63 � 1.33 ± 0.39	 0.92 ± 0.20�

HD221345 � 2.20 +0.13 -0.18 � 1.81 ± 0.45	 1.32 ± 0.08�

l 星震学を用いて質量を算出した	
ü HD104985, HD127243, HD221345	

l すべての天体において低質量よりの質量が見積もられた	
l 確率密度分布における低質量側のピークに相当	

ü  Bimodalな分布では低質量側のピークを支持	
p エイリアスの除去をどうするか�

Solar mass�

各天体の質量�


