107P Wilson-Harringtonの可視測光観測 -タンブリング運動・衛星を伴う可能性-

浦川 聖太郎¹、奥村 真一郎¹、西山 広太¹、坂本 強¹、高橋 典嗣¹、阿部 新助²、石黒 正晃³、北里 宏平⁴、黒田 大介⁵、 長谷川 直6、太田 耕司7、河合 誠之8、清水 康広5、長山 省吾5、柳澤 顕史5、吉田 道利9、吉川 真6 ¹日本スペースガード協会、²台湾中央大学、³ソウル大学、⁴会津大学、⁵国立天文台、⁶JAXA、⁷京都大学、⁸東京工業大学、⁹広島大学

概要

我々は、107P/Wilson-Harringtonの可視測光観測を行い、ライトカーブから自転状態や形状の推定を行った。その結果、ライトカーブには6回の光度のピークがあり、自転周期が0.2979日であるこ とが分かった。また、1周期の間に自転周期と3:1の関係にある0.0993日の微小な周期を検出した。ライトカーブから次のモデルが考えられる。1)107P はタンブリングを起こしている。0.0993日の周 期は歳差周期を反映している。2)107P はタンブリングを起こしていない。6 回のピークは形状を反映したものである。あるいは伴星を伴っている可能性を示唆している。

背景-あいまいになる小惑星/彗星の境界-

彗星·小惑星遷移天体

代表例 3200Phaethon:ふたご座流星群の母天体 → 過去の彗星活動を示唆 → 枯渇彗星核!? 軌道力学的な起源:2 Pallas (メインベルト小惑星帯の外側/水質変成物質を示唆)/スペクトルタイプ: B-type (Clark et al. 2010; de Leon et al. 2010) Main-belt Comets (MBCs) (Hsich and Jewitt 2006)

メインベルト小惑星帯に彗星活動をする天体を発見(133P,176P, P/2005 U1, P/2010 A2, 596 Scheilaなど7天体) 軌道力学的な起源: 133P, 176P, P/2005U1はThemis族 (Haghighipour 2009)

結果2-自転軸(全角運動量)の方向と形状-

ポッ<mark>ク法 (Magnusson, 1986)</mark> : 数ヶ月を超える長期間の観測では、"地球-107P-太陽"の位置関係の変化によりライトカーブには 相ズレが生じる。この位相ズレの大きさを最も良く再現する自転軸(全角運動量)方向を全ての黄経、黄緯方向に対してサーチ ghte<mark>urve-inver</mark>se法 (Kaasalainen and Torppa, 2001; Kaasalainen et al., 2001, 2002): ライトカーブを最もよく再現する形状モデル 転軸(全角運動量)方向を全ての黄経、黄緯方向に対してサーチ

		0.0	_			0.0285	- タンフリングしていない:目転軸方向 = 全角道
	80		80	1	A CONTRACTOR		タッブリッグレている・白転軸方向 メ 全角:
1000	60	0.7	60		1 Control Park		
Sec. 1		0.6	a 10	WANTAN MIL		0.0275	
	890 40		deg de		A STATE OF A	- 0.027	再手汁ズキキ性のたて広たら転動
10)) 20	0.5)əpn 20				両于法で有息性ののつ他を日転期
1.1	0 Itit	0.4	atiti 0				(全角運動量)方向の候補とする。
11 11	c Fc		c T	Sec And State		0.026	
1011	-20	0.3	ⁱ pti	1		0.0255	
0.5	123 -40	0.2	123 -40		A Share and the second second	0.005	
	-60	_	-60	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		0.025	白 転 軸 (今 名 : 雷 新 昙) 七 向
		- 0.1		1441		0.0245	日料====================================

Themis族は水質変成物質・水氷・有機物の存在を示唆, B-type) (Yang and Jewitt 2010, Rivkin and Emery 2010) |彗星活動の原因:他の小天体の衝突/YORP効果によるスピンアップでの分裂/熱的な効果 彗星·小惑星遷移天体/MBCs研究

・小惑星の起源(ニースモデル由来のprimordial TNOsを捕獲という説 (Levision et al., 2009)の検証) |彗星/小惑星の相違点 ・地球近傍天体の起源 ・海の起源

107P Wilson-Harrington

Fernandez et al. 1997

1949年パロマ天文台で発見。淡い尾を確認、その後行方不明。1979年に発見 された地球近傍小惑星(4015)/1979VAが107Pと同一天体であると同定。発見 、彗星活動は検出されていない。

624 i: 2.785° Tisserand パラメーター (T_i): 3.08

性 (4%), outerメインベルト天体である可能性(65%) (Bottke et al. 2002) I, 直径: 3.46 ± 0.32 km (Licandro et al. 2009) (Tholen 1989)

自転周期は異なる2つの報告

3.556時間 = 0.1482日(Harris and Young 1983)/6.1 ± 0.05 時間 = 0.2542日(Osip et al. 1995)

- 彗星活動の原因は何か?
- MBCsの発見/TNOsを起源とする小惑星の存在:小惑星帯に彗星活動を起こす程、揮発性物質が豊 富な小惑星が存在していても不
- 軌道力学的な起源は、MBCsと同じような小惑星帯の外側

Ecliptic Longitude(deg.) Ecliptic Longitude(deg. エポック法の結果 図5. Lightcurve-inverse法の結果

Lightcurve-inverse法による形状モデル

おおよそCタイ

゚ゕゎ゙゚゚゚ゕゎ

の兆候を示すも

候補A ($\lambda = 310^\circ$ 、 $\beta = -10^\circ$)

候補B ($\lambda = 132^{\circ}$ 、 $\beta = -17^{\circ}$)

候補C ($\lambda = 330^{\circ}$ 、 $\beta = -27^{\circ}$)

力量方向

候補Aでの形状モデル。左)Pole-on方向からの 俯瞰。右)赤道方向からの俯瞰。候補Bのモデルもに ぼ同様な形状

ミ補Cでの形状モデル。左)Pole-on方向からの俯瞰。右)赤 いらの俯瞰。

候補A,Bの形状3軸比、L₁:L₂:L₃(L₃が自転軸)=1.0:1.0:1.6 縦長形状、安定した回転状態は困難→タンブリングの可能性

• 観測値はタンブリングする剛体の運動方程式を満たすか?

$$\dot{\psi} = \cos\theta \left(\frac{M}{I_3} - \dot{\phi}\right) \qquad \phi = \frac{M}{I_1} \qquad I_1 = \frac{\mu}{20}(L_2^2 + L_3^2) \qquad I_3 = \frac{\mu}{20}(L_1^2 + L_2^2)$$

 ψ, ϕ, θ :自転、歳差、章動に対するオイラー角 I_1 , I_3 :3軸不等楕円体の各軸に対する慣性モーメント M:全角運動量 μ :質量

 $\phi = 3\psi$, L₁=L₂=1.0, L₃=1.6 を代入 θ (章動角)=65°で運動方程式を満たす 形状モデルその1:65°横倒しになり、自転周期0.2979日、 歳差周期0.0993日でタンブリングしている

候補Cの形状3軸比 L₁:L₂:L₃=1.5:1.5:1.0の横長形状

観測

ライトカーブ(可視相対測光)観測: 2009/8/17 - 2010/3/11 (計: 714 里の後、アパーチャー測光(IRAF)/十分明るい比較星を用いた相対測光 多色測光観測: 2009/12/18 (美星スペースガードセンター(BSGC) 1.0m + 岡山天体物理観測所(OAO) 0.5m) 多色測光での使用フィルター: SDSS g', r', i', z' (BSGC)、g', R, I (OAO) 標準測光星:107Pと同一視野内に撮像されるSDSSカタログの星

木曽観測所 1.05m 2009/11/7 - 2009/12/21 2009/8,17,19,20, 12/12

観測値は運動方程式を満たさない

形状モデルその2: タンブリングしていない。0.0993日は 六角形のような形状を反映したもの

Cタイプ小惑星。明らかな表面カラーの不均一性は見られない

-自転周期-結果1

OAO 0.

·ダンピングタイムスケール:620万年 也天体衝突であった地 『活動の原因 その運動は現在まで十分継続してし

0.95)の減光 と0 65(0.)).2979日でロ D公転周

107Pの自転周期: 0.2979日

他の自転周期候補の棄却理由

979日のライトカーブは全ての 明るさは太陽光の散乱断面積を反 で、半回転の

里由2: 周期0.2979日は先行研究の結果を矛盾なく説明できる。

周期0.2979日は、Harris and Young 1983の周期(0.1482日)の約2倍。3回ピークのライトカーブ の結果と矛盾しない。しかし、Osip et al. 1995のデータと整合性がなく、自転周期と考え

Harris and Youngは1回分の振幅を検出できず、3回のピークを典型的な2回ピークのライ

Osip et al. 1995による周期6.1±0.05時間は、凡そ0.2591日(≒6.22時間)に一致。

0.5回転/日の違いを区別できなかった

ようど1/3の長さ。振幅が異なる3つのピークと谷が重なりあっている。 里由3:0.0993日は0.2979日のち。

0.0993日の周期はタンブリング運動の歳差周期である可能性

タンブリング運動をしていた場合、 歳差周期と自転周期を重ね合わせ ━━> 歳差周期 ると 周期性が 表れる (Kaasalainen,

2001)

自転周期 P_w:0.2979日 P.: 0.0993 E

ね合わせ周期

周期性あり、タンブリング運動の可能性あり

衛星の直 県によるスピン 「れも彗星活動

まとめ

である0.29 反映。 半う可能性る 探査計画に は高くなる。