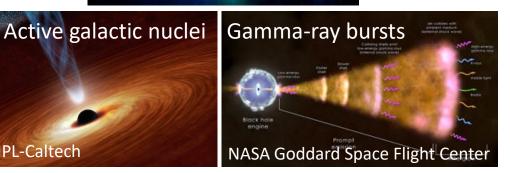


Nozomu Tominaga (DoS, NAOJ) On behalf of collaborators (but the content is all my responsibility)

Collaborators

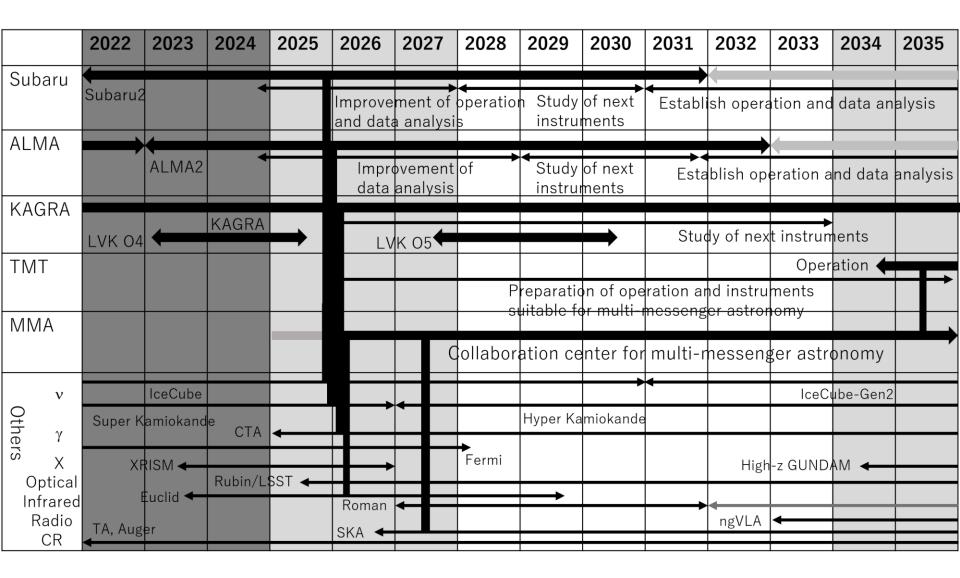

- NAOJ
 - N. Tominaga, T. Tomaru, Y. Aso, K. Kohri, T. Takiwaki, S. Iguchi, H. Izumiura, Y. Iwata, Y. Utsumi, R. Ohsawa, Y. Koyama, T. Takata, B. Hatsukade, H. Furusawa, S. Miyazaki, T. Moriya, M. Yoshida, TMT project
- Others
 - S. Yoshida (Chiba), M. Tanaka (Tohoku), D. Yonetoku (Kanazawa), K. Tsumura (Tokyo City), and more

Multi-messenger astronomy

University of Warwick/Mark Garlick

1. Summary of proposal

- Science goals and objectives
 - Clarify the origin of matter and elements and the evolution of matter in the Universe
 - Verify the basic physics laws
- Science investigations, instrumentations and data
 - Develop multi-messenger astronomy
 - Clarify the nature of multi-messenger sources
 - Subaru2, ALMA2, KAGRA, OISTER, JVN, instruments managed by other institutes
 - Light curve, spectra, realtime report, multi-messenger information
- Threshold science
 - Immediate and continuous follow-up observations of multi-messenger sources using large-scale cutting-edge astronomical research facilities
 - Immediate data access and analysis and realtime reports
 - Clarification of the nature of multi-messenger sources
- Cost estimation
 - 200M JPY/year (NAOJ: 160M JPY/year)
- Project organization
 - Center of multi-messenger astronomy
 - Collaboration with other institutes for multi-messenger and multi-wavelength observations


2. Science goals

- Clarify the origin of matter and elements
- Clarify the evolution of matter in the Universe
- Verify the basic physics laws

3. Scientific objectives

- Utilize any messengers from astronomical objects
- Develop multi-messenger astronomy
- Clarify the nature of multi-messenger sources and the origin of elements and cosmic rays
- Search new elemental particles
- Develop new astronomy using the multi-messenger sources

4 Science investigations - timeline

4.1 Science investigations until 2033

- Multi-messenger/multi-wavelength observation
 - Gravitational wave: LVK O5 run (2027-2030)
 - High-E neutrinos: IceCube-update (2022-), IceCube-Gen2 (2031-)
 - MeV neutrinos: Super Kamiokande-Gd (2024-), Hyper Kamiokande (2027-)
 - Gamma-ray: Cherenkov Telescope Array (2024-)
 - Cosmic rays: Telescope array, Auger
 - Other optical, infrared, radio: Rubin/LSST (2025-), Euclid (2023-), Roman (2027-), SKA (2026-)
- Immediate and continuous follow-up observations of multimessenger sources using large-scale cutting-edge astronomical research facilities (Subaru2, ALMA2, KAGRA, OISTER, JVN)
 - Flexible, low-latency, and stable operation
 - Fast and stable network
 - Immediate data access and analysis, and realtime alerts
 - Time-domain archive
 - Coordinated observations over projects
- Clarify the nature of multi-messenger sources
- Identify requirements for next generation instruments
- Center for multi-messenger astronomy in NAOJ

4.2 Science investigations beyond 2034

- Multi-messenger/multi-wavelength observation
 - Gravitational wave: LVK O6? LIGO Voyager, Einstein telescope, Cosmic explorer
 - High-E neutrinos: IceCube-Gen2 (2031-)
 - MeV neutrinos: Hyper Kamiokande (2027-)
 - Gamma-ray, X-ray: CTA, High-z GUNDAM (2034-)
 - Cosmic rays: Telescope array, Auger
 - Other optical, infrared, radio: Rubin/LSST, Euclid, Roman, SKA, ngVLA (2033-), LST
- Lead the multi-messenger astronomy with electromagnetic observations, collaborating with other institutes and instruments
- Clarify the origin of matter and elements
- Verify the basic physics laws
- Develop next generation instruments

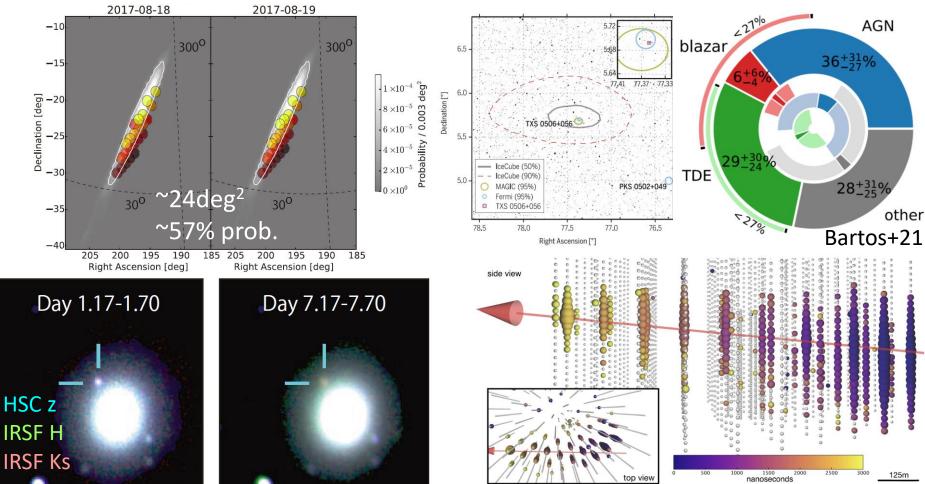
4.3 Threshold Science

- Identification of electromagnetic counterparts of multi-messenger sources
- Clarification of the nature of multi-messenger sources
- Immediate and continuous follow-up observations of multi-messenger sources using large-scale cutting-edge astronomical research facilities
- Immediate data access and analysis, and realtime reports

5. Instruments and data to be returned

- Information of multi-messenger sources
 - NAOJ: Subaru, ALMA, KAGRA, optical, infrared, radio
 - Multicolor light curves (datetime, magnitude, filters)
 - Spectral evolution (datetime, spectra)
 - Immediate and continuous follow-up observations and realtime reports
 - Others: LVK, IceCube, SK & HK, CTA, TA/Auger, Satellites
 - Multi-messenger information (datetime, localization, properties, etc.)
 - Low-latency alerts

6. Originality and international competitiveness


- Multi-messenger astronomy
 - US: recommended in Astro2020, NOIRLab
 - Europe: Asterics

Discussion and implementation are ongoing.

- Japan
 - All large-scale cutting-edge electromagnetic (optical, infrared, and radio) facilities are operated by NAOJ.
 - No arrangement among institutes is needed and easy to integrate data taken with multiple instruments.
 - NAOJ is the most suitable institute in the world.

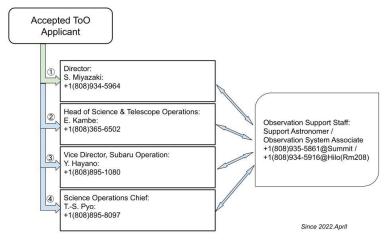
Gravitational waves

Only 1 object

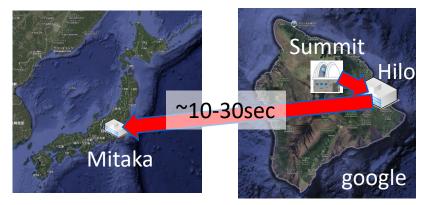
• High-E neutrinos

Origin is unclear

IceCube+18


NT+18; Utsumi, Takana, NT+18

- Operations and systems of large-scale cutting-edge astronomical research facilities are not designed for multi-messenger astronomy.
- Well-organized, well-coordinated, and stable operations and systems are needed.
- Some important functions are under improvement and development.
- Data analysis pipeline for Subaru/HSC and Subaru/PFS, after transferring raw or processed data, a part of science platform and database for time-domain astronomy using Subaru, and a new instrument for Subaru (NINJA) are under development with Grants-in-Aid for Scientific Research (Kakenhi).



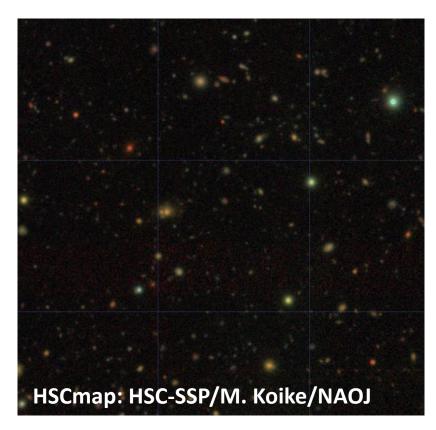
Examples to be improved

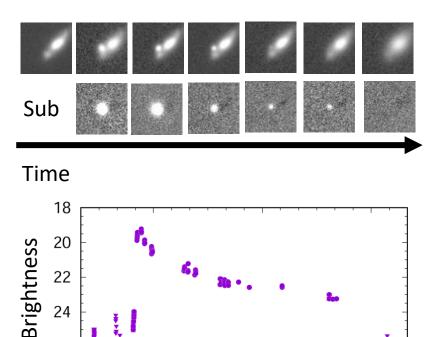
 Target of opportunity observation

For non-rapid ToO programs, you need to submit your request by 9:00 am Hawaii time one day before your observing night. A rapid ToO (for HSC queue at first) is under implementation led by Pyo-san. High-speed network

High-speed (100Gbps) communal-use network between Hawaii and Mitaka was established in 2023. But it is not always available.

• Short overhead (HSC)


Exposure Overhead


Overhead time of HSC is ~30-40sec, comparable with an exposure time for a wide tiling survey. A short overhead enhance efficiency in MMA.

- Time-domain archive is not available.
 - Subaru, ALMA, etc
- If available, non-experts, theoretical researchers, can start researches using the data.

26

59550

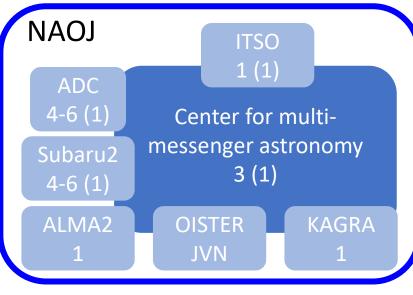
59580

Date

59610

8. Cost assessments, budget line and status

- Data analysis and archive system: 300M JPY/6years
 - High-speed storage and high-speed database: >20PB
 - Subaru/HSC, PFS, ULTIMATE, ALMA, OISTER, JVN, VLBI
 - Rubin/LSST, Euclid, Roman, SKA, ngVLA
 - Multi-messenger information
 - CPU: > 2000 cores
 - Realtime data analysis
 - Science platform
 - Computer room, electricity, stable network, etc


8. Cost assessments, budget line and status

- Human resources: 14-18 persons: 150M JPY/year
 - Center for MMA
 - Management and strategy: 1 person (faculty)
 - System implementation (optical/infrared, radio): 2 persons
 - Concurrent appointments of faculties in NAOJ projects
 - ADC
 - Maintenance: 1 person (faculty)
 - System installation and implementation (pipeline, science platform, high-speed storage and database, etc.): 3-5 persons
 - Subaru
 - Operation design: 1 person (faculty)
 - System and operation improvement (HSC, PFS, ULTIMATE, etc.): 3-5 persons
 - IT Security Office
 - Network maintenance: 1 person (faculty)
 - ALMA
 - Construction of time-domain archive system: 1 person
 - GW
 - Construction of data analysis system: 1 person
 - OISTER, JVN, and VLBI

8. Cost assessments, budget line and status

- Budget line
 - Management Expense Grant
 - Budget requests
 - NINS reorganization
 - Existing Large Scientific Research
 - Subaru2 (incl. MMA -2031), ALMA2 (-2032), TMT (20xx-)
 - Grants-in-Aid for Scientific Research
 - Scientific Research (S) (PI: M. Yoshida) -FY2025 (NINJA)
 - Transformative Research Areas (A) (PI: S. Yoshida) -FY2027 (1 postdoc)
 - Scientific Research (S) (PI: N. Tominaga) -FY2028 (2 postdocs, >3PB, >500cores)
 - New proposals after FY2027/2028
 - Scientific Research (A,S), Specially Promoted Research, Transformative Research Areas (A), WPI?

9. Project organization

Number of new faculty staffs is in ().

Education of young researchers

The researchers will become researchers who will lead the next generation of bigdata astronomy. Gravitational wave Advanced LIGO, advanced Virgo, KAGRA

High-energy neutrinos IceCube (Chiba University, 10)

MeV neutrinos Super Kamiokande, Hyper Kamiokande

Cosmic rays Telescope array, Auger

Gamma-ray Cherenkov telescope array, Fermi

X-ray

XRISM, High-z GUNDAM (Kanazawa Univ., etc.)

Researchers

Tohoku University, etc.

Only a part of potential collaboration and institutes are listed. Any institutes interested in MMA are welcome to join.

10. Why NAOJ? - activity

- Effective use of large-scale cutting-edge astronomical research facilities: Subaru2 (HSC/PFS/ULTIMATE), ALMA2, KAGRA, ADC, CfCA, ATC, TMT
 - Flexible operation
 - Immediate data access and analysis
 - Fast and stable network
 - Efficient archive system, in particular on time series
 - Preparation and coordination over projects
- Sufficient infrastructure (network, room, power, and A/C)
- Increase faculty members and system engineers working on the multi-messenger astronomy in each project
- Center for multi-messenger astronomy
 - Collaboration among NAOJ projects
 - Coordination with other institutes and instruments
 - Rubin/LSST, SKA, ngVLA, Euclid, Roman, IceCube-Gen2, HK, CTA, XRISM, High-z GUNDAM, LAPYUTA, GREX-PLUS, TA
 - Investigation and development of next-generation large-scale facilities if necessary

10. Why NAOJ? - reason

- All large-scale cutting-edge electromagnetic (optical, infrared, and radio) facilities are operated by NAOJ.
- No other institutes in Japan can integrate these observations and lead the collaboration with other multi-messenger or multi-wavelength institutes and instruments.
- Multi-messenger astronomy requires the improvement of infrastructure and operation. These sometime donot fit with Kakenhi.
- NAOJ is the most suitable institute for the multimessenger astronomy in the world.

1. Summary of proposal

- Science goals and objectives
 - Clarify the origin of matter and elements and the evolution of matter in the Universe
 - Verify the basic physics laws
- Science investigations, instrumentations and data
 - Develop multi-messenger astronomy
 - Clarify the nature of multi-messenger sources
 - Subaru2, ALMA2, KAGRA, OISTER, JVN, instruments managed by other institutes
 - Light curve, spectra, realtime report, multi-messenger information
- Threshold science
 - Immediate and continuous follow-up observations of multi-messenger sources using large-scale cutting-edge astronomical research facilities
 - Immediate data access and analysis and realtime reports
 - Clarification of the nature of multi-messenger sources
- Cost estimation
 - 200M JPY/year (NAOJ: 160M JPY/year)
- Project organization
 - Center of multi-messenger astronomy
 - Collaboration with other institutes for multi-messenger and multi-wavelength observations