

NAOJ Future Symposium: Science Roadmap of NAOJ December 5, 2024

Solar flare X-ray focusing imaging spectroscopy

state-of-the-art solar flare observations with spatial, temporal and energy resolutions in X-rays

Noriyuki Narukage (NAOJ) FOXSI sounding rocket team members PhoENiX satellite WG members

2. Science Goals

of solar flare X-ray focusing imaging spectroscopy

- The overarching goal is to understand the universality of plasma acceleration to high-energies and how such phenomena on the Sun and stars can impact planetary environments and habitability.
 - Scientific Key Words
 <u>As the Plasma Universe</u>
 - Magnetic Reconnection
 - Plasma Heating
 - Particle Acceleration
 - Impacts to Environments
 - Space Weather
 - Habitability

© ISAS/JAXA, NASA

© NAOJ, ISAS/JAXA, NASA

Why Solar Flare Observation – Significance of solar flare study –

[Plasma physics]

Natural laboratory of plasma

- Magnetic reconnection
- Particle acceleration

[Unique observation target]

The closest star

 Solar phenomenon can be observed with wide field of view and with spatial and temporal resolutions

[Impacts on the Earth and social environments]

The mother of the Earth

- Evolution of life (cosmic rays)
- Space weather

[As a star]

Reference of other astrophysical objects

2011-09-12 05:34:16 UT

© SDO/AIA

Unsolved problems in solar physics

+ The X-ray Focusing Imaging Spectroscopy can tackle it.

- How are the magnetic fields of the sun created?
 - → Solar Dynamo Problem
- How is the solar corona formed (heated)?
 - → Solar Coronal Heating Problem
- How do explosive phenomena occur in the solar atmosphere?

→ Solar Flare Problem

How are particles accelerated by solar flares?

→ Solar Particle Acceleration Problem

Solar Flare (Magnetic Reconnection)

Level 4 micro/kinetic

1m

inertia length,

gyro-radius,

curvature drift,

etc.

5

Energy Flow Chart of Solar Flare (Magnetic Reconnection)

3. Science Objectives Investigation of the energy release caused by magnetic reconnection and the energy conversion mechanism resulting from it.

4. Science Investigations

X-ray Focusing Imaging Spectroscopy

5. Instruments and data to be returned **Required technologies** for solar flare X-ray focusing imaging spectroscopy FOXSI- was successfully FOXS launched on 17th April 2024. Electroformed Soft X-ray Soft X-ray **Pre-collimator** X-ray mirror 7 X-rat telescopes CMOS detector camera electronics Hard X-ray **CdTe detector Pre-filter Solar Corona** & Flare

© FOXSI-4 team

6. Originality and international competitiveness 7. Current Status

Achievements

of solar flare X-ray focusing imaging spectroscopy

- Successful FOXSI sounding rocket series, which are the US-Japan collaborative projects using NASA rockets
 - First focusing imaging spectroscopy for the solar corona in hard X-rays (FOXSI-1 and -2)
 - First focusing imaging spectroscopy for the solar corona in soft X-rays (FOXSI-3)
 - In 2024, first focusing imaging spectroscopy for <u>a solar</u> flare in X-rays (FOXSI-4)

FOXSI-2 result Published in nature astronomy

Hi-C FLARE

FOXSI-4 Flare campaign in 2024

10

Summary of FOXSI-4 observation

- Observations
 - Flare in decay phase (~3.5 min)
 - Flaring loop
 - Onset of blighting
 - Eruption
 - Non-flaring AR (~1 min)

	Soft X-ray telescope	Hard X-ray telescope
Detected photons	> 10 M photons	> 20 k photons
Spatial sampling	1.1 arcsec	8.8 arcsec (ave.) 3 arcsec (best)
Temporal sampling	~ 4 msec	~ 170 usec
Energy range	~ 1 keV – ~ 10 keV	~ 4 keV – ~ 20 keV
Energy resolution	~ 0.3 keV @ 6 keV	~ 0.8 keV @ 14 keV
Spectrum	Continuum + several lines	Continuum + Fe line
Flaring AR 13643		coo.
Non-flaring 13639 & 13640		Compared to Market Arrows and Arrows an Arrows and Arrows and Arro
© FOXSI-4 team	ANTER OF A DECEMBER OF	-500 -400 -300 -200 -100 Solar-X (Rater pos [grosed]) [Data: 200 - 2

Remarkable Features of FOXSI-4 data

Soft X-ray data (up to ~10 keV) with ~ 1.5 M photons detected by CMOS2

Scientists can flexibly assign individual X-ray photons for analysis.

Example1: Investigate the spatial distribution of high-energy plasmas

CMOS2 soft X-ray spectrum

Example2:

Investigate the temporal evolution of the entire flaring region spectrum with 10 sec cadence

- FOXSI-4 was launched on April 17, 2024, and successfully completed the world's first solar flare X-ray focusing imaging-spectroscopic observation.
- > Data calibration and scientific analysis are ongoing.

And on to the next FOXSI

FOXSI-5 has been selected by NASA with the highest rating of Excellent.

日米共同・太陽フレアX線集光撮像分光観測ロケット実験 FOXSI-4, PI: 成影 (FY2021~2025)

- 基盤研究(A) 22H00134, PI: 成影 (FY2022~2024)
- 国際共同研究加速基金(国際共同研究強化(B)) 21KK0052, PI: 成影 (FY2021~2024)
- 基盤研究(A) 21H04486, PI: 渡辺 (FY2021~2024)
- ほか(上記は現在実施中のもののみ記載;採択順)

Future Plans (including 8. Cost assessments, budget line and status) Utilizing three types of opportunities in different scales, we will create scientific results speedily and ceaselessly.

Sounding rocket (NASA)

- 2m long instrument
- Recoverable

© FOXSI team

SmallSat

(Canon Electronics) • ~0.6m long instrument

~90kg (total mass)

© CANON ELECTRONICS INC.

© PhoENiX WG

14

Full size satellite

• ~3m long instrument

~600kg (total mass)

(ISAS/JAXA)

Schedule

第五期中期計画期間 (2028-2033)

Annual Plan	2024 (R6)	2025 (R7)	2026 (R8)	2027 (R9)	2028 (R10)	2029 (R11)	2030 (R12)	2031 (R13)	2032 (R14)	2033 (R15)	2034 (R16)	2035 (R17)	2036 (R18)	2037 (R19)
Sounding rocket FOXSI-5	Launch	preparati	ons Launch											
SmallSat (90kg class)	Concept	tual study Prop	/ Basic d osal / Re	evelopme view Fabricat	nt ion/Test	Launch /	Operation	n Post-m	ission op	eration				
Full size satellite (In the case of ISAS/JAXA opportunity)	Concept	tual study	/ Basic d	evelopme Prop	nt oosal / Re	view Reviews	s / Design	/ Fabrica	tion / Tes	t			aunch / C	peration
 The following items will be carried out throughout the entire period Analysis of observation data obtained from the FOXSI series 														

· Numerical calculations and theoretical studies on magnetic recombination, including particle acceleration

Hinode (will be terminated in FY2033) in VL, EUV and X-rays

SOLAR-C (plan to be launched in FY2028) in EUV

9. Project Organization

Solar Physics

High Energy Space Plasma Astrophysics Physics

Laboratory or Fusion Plasma **Physics**

PI/Co-I Name	Affiliation	Major responsibilities						
	Amiliation	in Pre-phase A1a	in Pre-phase A1b and A2					
Noriyuki Narukage	NAOJ	Project lead	Principal Investigator (PI)					
Mitsuo Oka	UCB	Mission science study	Project Scientist (PS)					
Yasushi Fukazawa	Hiroshima U.	SGSP science study	Project Scientist (PS)					
Shin Watanabe	ISAS/JAXA	System study	Mission system lead					
Keiichi Matsuzaki	ISAS/JAXA	System study, SXIS design study	Mission system lead					
Taro Sakao	ISAS/JAXA	SXIS science & design study, System study	SXIS lead, mirror study					
Lindsay Glesener	U. Minnesota	HXIS US contribution study	HXIS U-lead, mirror study					
Kouichi Hagino	U. Tokyo	HXIS science study	HXIS J-lead, camera study					
Tsunefumi Mizuno	Hiroshima U.	SGSP science study	SGSP lead, detector study					
Kazuto Yamauchi	Osaka U.	SXIS mirror study	SXIS mirror study					
Satoshi Matsuyama	Nagoya U.	SXIS mirror study	SXIS mirror study					
Masayuki Ohta	ISAS/JAXA	SXIS/SGSP detector study	SXIS/SGSP detector study					
Ikuyuki Mitsuishi	Nagoya U.	Pre-filter and HXIS mirror study	Pre-filter and HXIS mirror study					
Säm Krucker	UCB/FHNW	SXIS/HXIS US+Swiss contribution study, HXIS design study	SXIS/HXIS US+Swiss contribution study, SXIS/HXIS design & science study					
Tom Woods	LASP, Colorado U.	SXIS/HXIS US contribution study	SXIS/HXIS US contribution study, SXIS/HXIS design & science study					
Amir Caspi	SwRI	SXIS science study	SXIS design & science study					
Steven Christe	NASA/GSFC	HXIS design study	HXIS design & science study					
Amy Winebarger	NASA/MSFC	SXIS/HXIS US contribution study	SXIS/HXIS US contribution study & science study					
Patrick Champey	NASA/MSFC	HXIS mirror study	HXIS mirror study					
Wayne Baumgartner	NASA/MSFC	HXIS mirror study	HXIS mirror study					
Bin Chen	NJIT	SXIS/HXIS science study, Radio observation study	SXIS/HXIS science study, Radio observation study					
Alexander Warmuth	AIP	SXIS/HXIS science study, DLR contribution study	SXIS/HXIS science study, DLR contribution study					
Tomoko Kawate	NIFS	Science study	SXIS/HXIS/SGSP science study					
Masumi Shimojo	NAOJ	SXIS science study	SXIS science study					
Takafumi Kaneko	Niigata U.	SXIS/HXIS science study with simulations	SXIS/HXIS science study with simulations					
Natasha Jeffrey	Northumbria U.	SGSP science study	SGSP science study					
Satoshi Masuda	Nagoya U.	Science study	Science study					
Shinsuke Takasao	Osaka U.	Science study	Science study					
lain Hannah	U. Glasgow	Science study	Science study					
Seiji Zenitani	IWF/ ÖAW	Science study	Science study					
Hiroshi Tanabe	U. Tokyo	Laboratory-based science study	Laboratory-based science study					
Munetaka Ueno	JAXA	N/A	System advisory					
Takeshi Takashima	ISAS/JAXA	System study	Science advisory					
Iku Shinohara	ISAS/JAXA	Science advisory	Science advisory					
Hiroyasu Tajima	Nagoya U.	Science advisory	Science advisory					
Tadayuki Takahashi	Kavli IMPU	Science advisory	Science advisory					

- In Japan, the NAOJ has played a central role in solar satellite projects in cooperation with ISAS/JAXA.
 - Such as Yohkoh, Hinode, and SOLAR-C satellites.
- In addition, the Solar Group of the NAOJ has been developing new observation technologies in between these large satellite projects, and has been successful in small-scale projects such as sounding rocket experiments (CLASP, FOXSI) and balloon experiment (SUNRISE), continuing to produce world-first scientific results.
- \rightarrow Our project is based on this trend and heritage.
- This has great significance not only from a scientific perspective, but also from the perspective of human resource development and the succession of development know-how and technology for space missions at NAOJ.