Exploring the Chemodynamical Evolution of the Milky Way and the Local Group through Wide and Deep Stellar Surveys

Implementation period: FY 2025-2033

Miho N. Ishigaki (Subaru Telescope/NAOJ) on behalf of the research collaborators

2024年度国立天文台の将来シンポジウム~国立天文台のサイエンスロードマップ~ December 3-6, 2024 (NAOJ, Mitaka Campus)

恒星系の深・広視野探査で拓く銀河系・局所銀河群の化学動力学進化

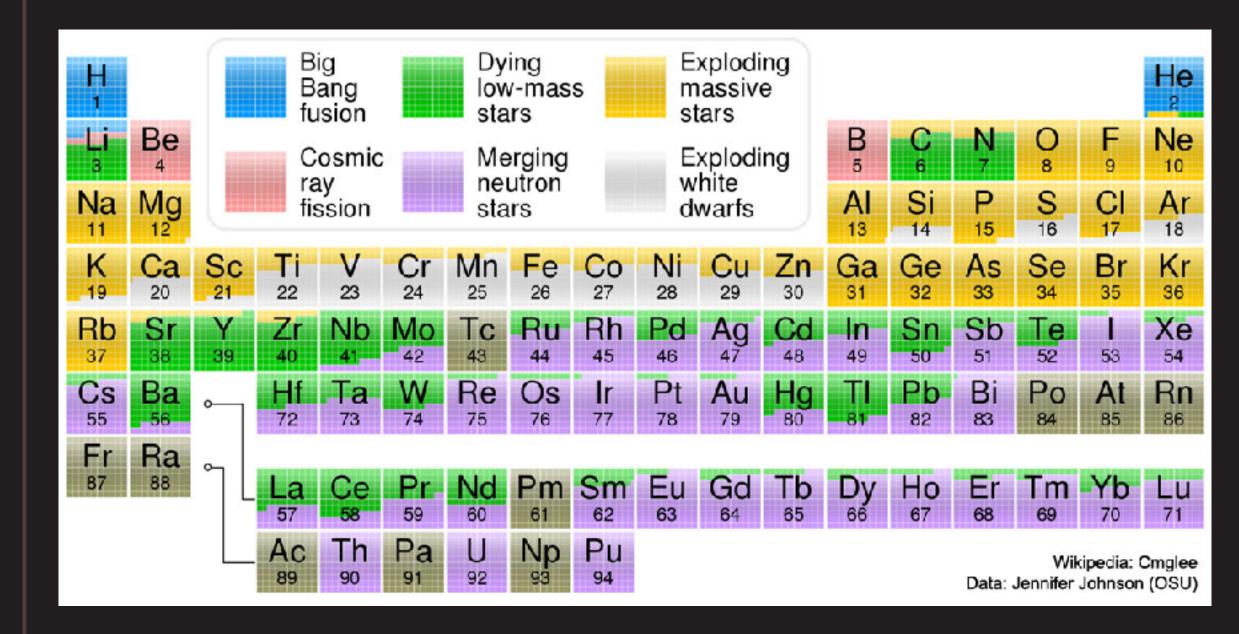
Current collaborators

In NAOJ

Daisuke Taniguchi Junichi Baba Kazunori Kohri Ko Takahashi Kohei Hattori Masami Ouchi Miho N. Ishigaki Naoyuki Tamura Nozomu Tominaga Sakurako Okamoto Takashi Moriya Takuji Tsujimoto Tomoya Takiwaki Wako Aoki

Outside NAOJ

- The proposal is based on inputs and discussions with many other researchers in the community
- Many on-going projects are lead by graduate students and young carrier researchers



- Ataru Tanikawa (Fukui Prefectural University)
- Kohei Hayashi (National Institute of Technology, Sendai Collage)
- Masahiro Takada (Kavli IPMU)
- Masashi Chiba (Tohoku University)
- Michiko Fujii (University of Tokyo)
- Noriyuki Matsunaga (University of Tokyo)
- Satoshi Honda (Hyogo Prefectural University)
- Tadafumi Matsuno (Heidelberg University)
- Takanobu Kirihara (Kitami Institute of Technology)
- Takuma Suda (Tokyo University of Technology)
- Tomoaki Ishiyama (Chiba University)
- Tsutomu Takeuchi (Nagoya University)
- Wen Yin (Tokyo Metropolitan University)
- Yutaka Hirai (University of Notre Dame/ Tohoku University)
- Yutaka Komiyama (Hosei University)

with many other researchers in the community dents and young carrier researchers

Scientific question: origins of matter in the universe

Baryonic matter (chemical elements)

- The ingredients of planets and life, the origin of ourselves
- The tracer of extreme astrophysical phenomena: stellar interior, supernovae, degenerate matter
 Impossible to directory observe
- Products of various stellar evolution channels: binary, star clusters, black holes, neutron stars, first super-massive stars
 Specific chemical patterns in stars and high~z galaxies

Ouchi-san's talk

Dark matter

Bullock & Boylan-Kolchin 2017

- The dominant constitute of the universe
- Unknown particle nature
- Played a fundamental role in galaxy formation
- The current dynamical properties of gas and stars in galaxies

Kohri-san's talk

Scientific objectives

This proposal:

The chemodynamical evolution of our Galaxy as a powerful probe of origins of matter

Using stellar observations in our Galaxy as a laboratory: Galactic Archaeology

Objectives:

 $(\mathbf{2})$

Conduct wide and deep photometric, spectroscopic, and astrometric surveys of stellar populations to obtain 6D phase-space and chemical abundance distributions in all Galactic environments

(1)and the surrounding Local Group galaxies

Chemical evolution of different chemical elements, astrophysical nucleosynthesis sites

Precisely estimate the local density and the density profiles of dark matter in the Galaxy and its dwarf satellites using stars as a dynamical tracer

➡ Particle nature of dark matter

Establish the chemodynamical evolution of stellar populations that have various star formation histories, including the bulge, disk system, stellar halo, globular star clusters, dwarf satellites,

3. Scientific objectives, 7. Current status

Major advancements in the past decade

Wide-field imaging and astrometric surveys of stars near covering the local disk and halo

Bulge

Stellar spatial distributions

- Discoveries of ultra-faint dwarf satellites
- Spatially-coherent stellar streams
- Stellar density profiles using various tracers

Phase-space distribution (proper motion+parallax)

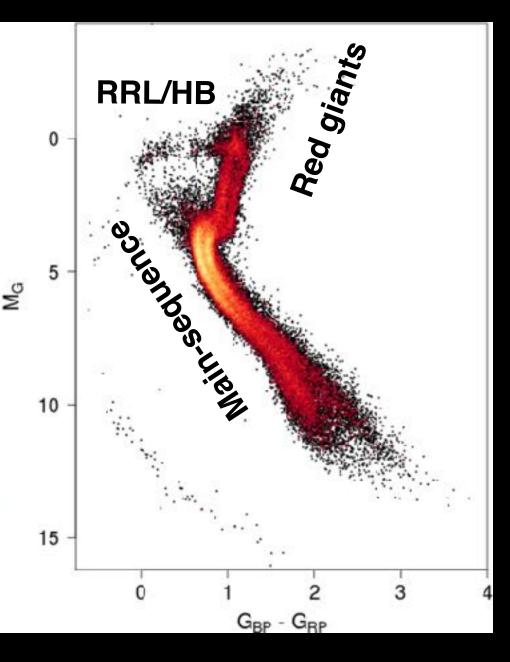
- Phase-space spiral in the Galactic disk ullet
- Merger history of the Galactic halo

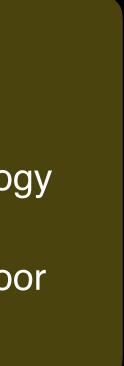
What is missing?

1 Wide-field spectroscopic data down to Gaia's limiting magnitude (G~19):

Lack of precise kinematics to constrain dark matter models, lack of detailed elemental abundances to constrain astrophysical sites of nucleosynthesis \rightarrow Medium-resolution spectroscopy with DESI, WEAVE, 4MOST, etc...

2 Restricted to the solar neighborhood ($d_{\odot} < 10 \text{ kpc}$) or with luminous but sparse tracers \rightarrow Vera Rubin Observatory (LSST), HSC(+NB), PFS, etc.





Chemical abundances and stellar ages

- Stellar ages from asteroseismology with 10-20% precision
- Discoveries of the most metal-poor and chemically peculiar stars

Development of theoretical studies

Fundamental understanding stellar and supernova physics

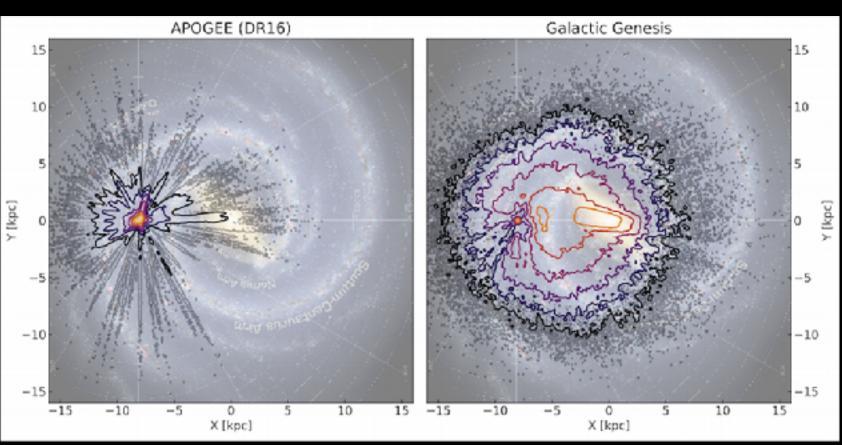
- Evolution of massive stars, including its rotation \bullet
- Physics of supernova explosions \bullet
- Evolution of binary star systems, gravitational wave sources \bullet

Chemo-dynamical properties of our Galaxy and the local group galaxies

- Density profiles of dark matter in the Galaxy and LG galaxies ullet
- The formation of the major components of our Galaxy lacksquare
- Chemical evolution of specific elements (e.g., α -elements, s/r-process elements, etc) to explain results from high-resolution spectroscopic surveys (e.g., GALAH, R~28K, up to 30 different elements)

Cosmological simulations

- Properties of the first stars
- Missing-satellite problems
- Galaxy mergers

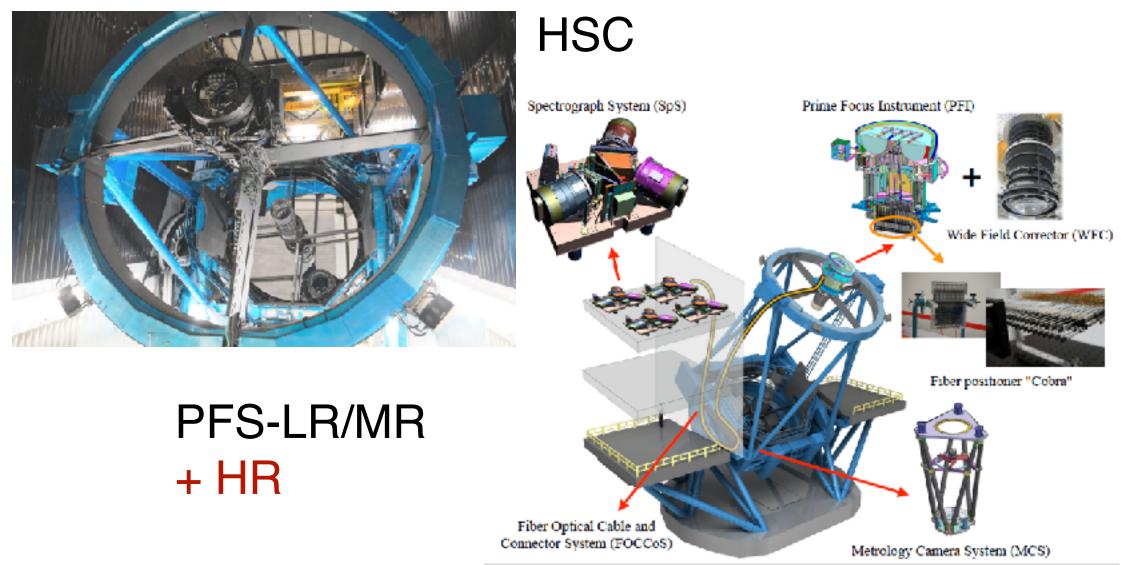

What is missing?

environments \rightarrow SDSS-V (R~22K, up to 18 elements)

2 Understanding of input physics, e.g., mechanisms of supernovae, element synthesis, etc...

Ongoing HR spectroscopic survey of the disk, "Milky Way Mapper"/SDSS-V https://www.sdss.org/dr18/mwm/about/

J. Baba, et al. 2022


Y. Hirai et al. 2022

(1) Statistical samples of multi-element stellar chemical abundances covering a wider range of Galactic

This proposal: by 2033

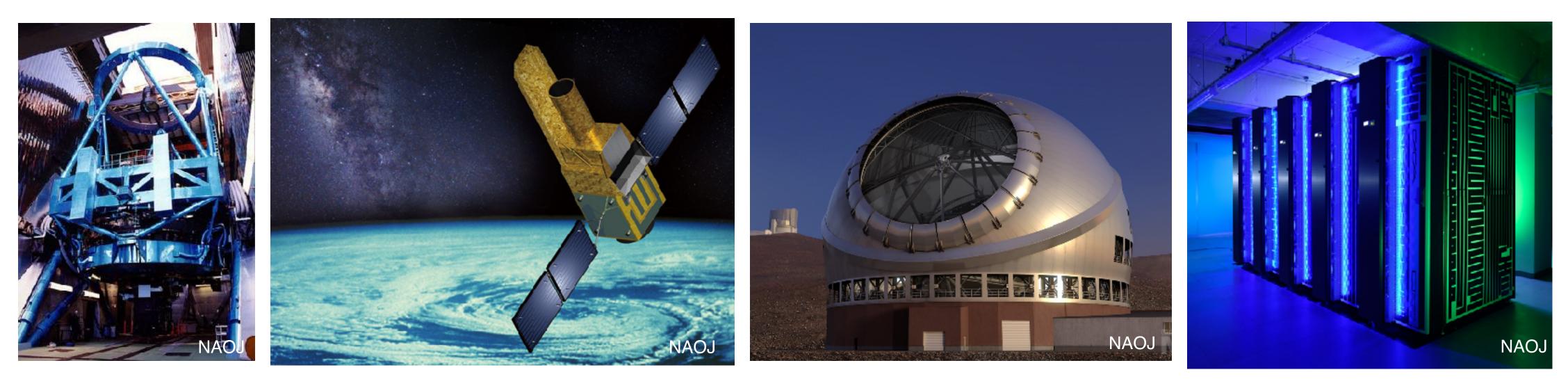
Observations and instrumentation

Threshold science

 Technical assessment, development, and construction of "PFS high-resolution (R~20K) mode"
 Combining HSC, PFS-LR/MR and Roman data to obtain stellar spatial distribution, 3D velocities, and chemical abundances ([Fe/H], [a/Fe] ratios) in the outer Milky Way, globular clusters, dwarf satellites, M31/33, and Local Group galaxies
 Comparisons with cosmological and chemodynamical simulations of the Milky Way-like galaxies

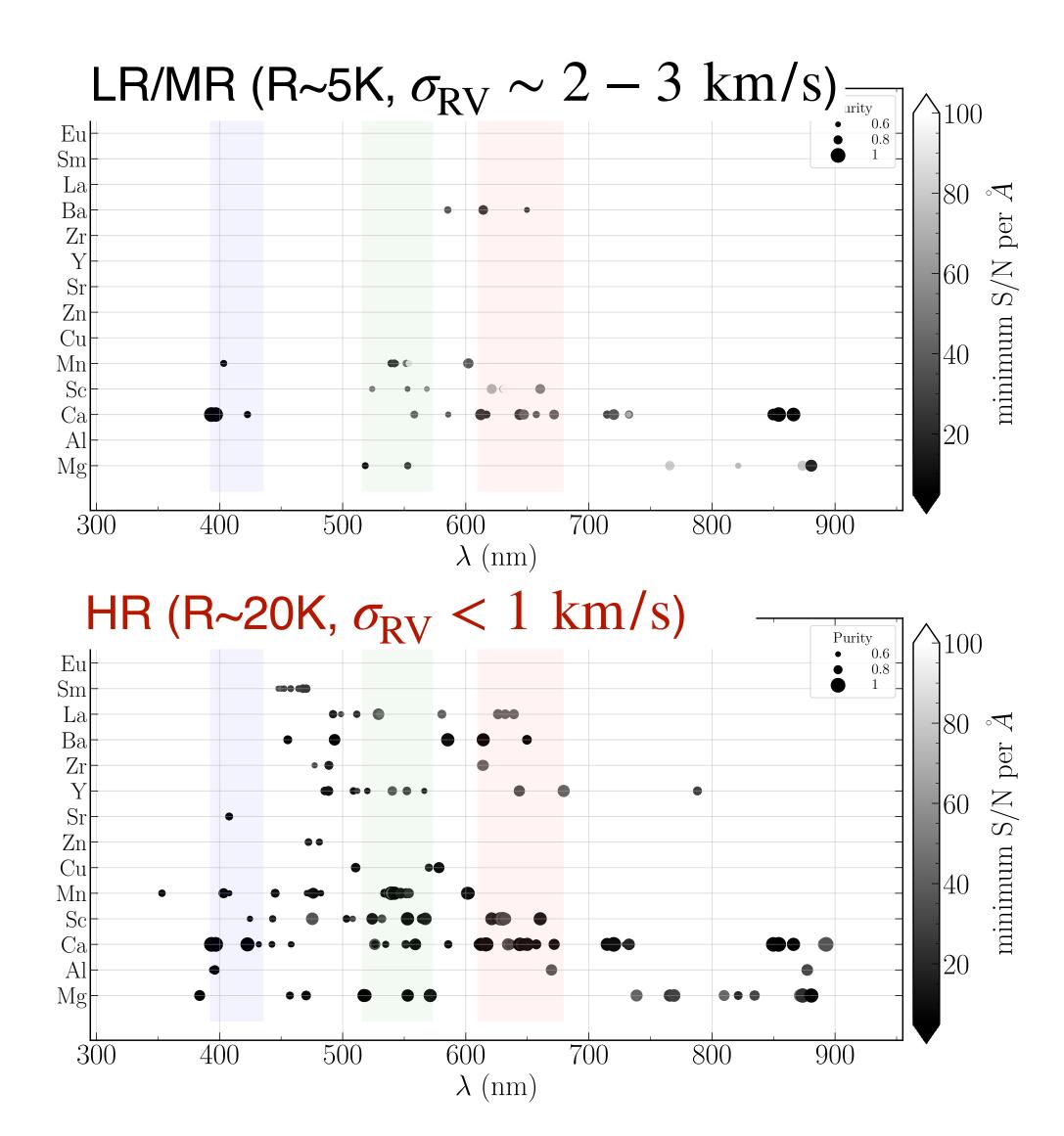
Theoretical interpretation

- Development of the models of dark matter density profiles to interpret 3D velocity data of dwarf satellites
- Development of theoretical models of stellar evolution, supernovae, neutron-star mergers to predict elemental yields
- Chemodynamical evolution of the Galaxy
 - Include various nucleosynthesis yields (supernovae, ABG) stars, neutron-star mergers, etc.)
 - Chemodynamics in various Galactic environments including dwarf galaxies, globular star clusters, the Galactic center


Synergy with multi-wavelength observations

- Detection of metal lines in highest redshift galaxies with ALMA/ JWST
- Metal abundances in supernova remnants from XRISM
- Indirect DM detection through γ -ray observations (e.g., Cherenkov Telescope Array)
- Multi-messenger observations (Tominaga-san's talk)

This proposal: Beyond 2033


- Stable operation and upgrade of supercomputers
- JASMINE + ULTIMATE + PFS: chemodynamical analysis of the Galactic center and the bulge
- TMT: Follow-up multi-object spectroscopy of the PFS-LR/MR catalog

Full operation of PFS-HR to precisely measure line-of-sight velocity and detailed elemental abundance down to $G\sim 19$ Accurate 6D phase space coordinates (ra, dec, parallax, proper motion, radial velocity) and multi-element abundances

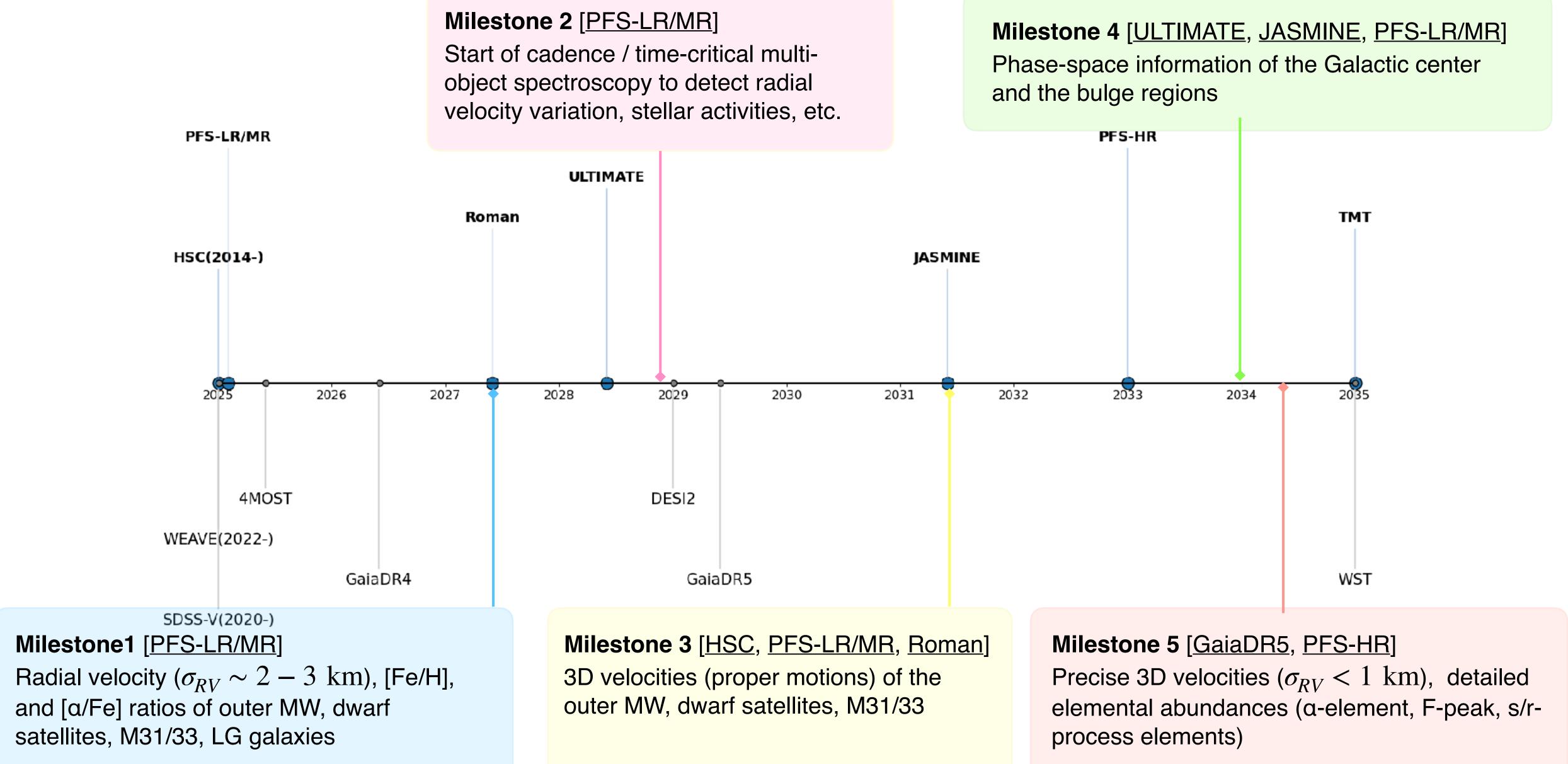
Utilizing time-domain/cadence multi-object spectroscopy: detection of BHs, globular cluster dynamics, stellar activities

Originality and competitiveness of PFS-HR

WST white paper

A HR MOS in wide-field instruments (>1deg²) at 8-10m telescope does not exist

- High-precision velocity (<1km/s) for dark matter \bullet investigation through stellar dynamics
- Elemental yields in various astronomical sites
 - CNO: low-mass stars, stellar rotation/mixing ullet
 - Mg: massive stars lacksquare
 - Mn, AI: metallicity-dependent stellar yields ullet
 - Sc, Ti, Cu, Zn: supernova explosion physics lacksquare
 - Y, Sr, Ba: s- and r-process in AGBs, neutron-star lacksquaremergers
- Demanding for all the relevant science addressing matter origins


Competitiveness

- Previous wide-field high-resolution spectroscopic surveys have been conducted with smaller (~2m) telescopes (e.g., APOGEE/ SDSS, GALAH)
- The planned high-resolution MOS instrument, MOONS@VLT: small FoV (25 arcmin diameter) compared to PFS FoV (1.3 deg diameter) and at NIR
- WST: high-resolution MOS @ 10m telescope (2033+) \bullet

Instrument/project timeline and data delivery milestones

Project organization, current status

Organization

Current collaborators cover a wide range of research fields

Stellar observations Galactic center, Bulge Halo, Globular Clusters Local Group galaxies	Disk system	Dark ma Stellar dyna Cosmolo Particle phy
Data science Statistics, machine learning	Origins of in the un	Black stellar-m
Stellar evolution, nucleosynthesis Chemical yields Supernova physi	ics	Galaxy evo Simu high-z ga

Relevant projects at NAOJ

Subaru Telescope (HSC/PFS), Division of Science, ADC, ATC, Institute of Statistical Mathematics, CfCA, JASMINE, TMT

atter

- amics
- logy
- nysics

k holes

mass BHs **IMBHs**

olution

ulations alaxies

Current status of PFS-HR

Specification of technical requirements based on scientific needs is underway (An initial concept design has been done under "WFMOS" project)

M. Chiba-san's presentation at Subaru3 workshop (Subaru SAC / Aug 2024) https://drive.google.com/file/d/1m7gelsMhtspmEZfqsTssPQ0xg-oSa5A4/view

Cost (unit: JPY)

- Kakenhi: ~500M for construction (TBD)
- NAOJ: ~200M total, ~20M/year (TBD)
 - Technical assessment by ATC
 - Necessary upgrades of the telescope (e.g., a new floor to host PFS-HR)
 - Hiring new staff members to lead scientific analysis, \bullet development/construction of PFS-HR

This proposal in the NAOJ Science Road Map

Why at NAOJ?

- Exploration of the fundamental question in science
- Full exploitation of the wide-field capabilities and their upgrades of Subaru Telescope \bullet
- Function as a center for integrating theoretical and observational research \bullet
- Utilization of the framework for graduate education and training of early-carrier researchers \bullet

Required platforms and cost from NAOJ

- Startup of the development of PFS-HR 1.
 - Technical assessment with ATC
 - Hiring staff to lead technical investigation and development \bullet
 - Necessary renovation of Subaru Telescope
- 2. Database to host multi-wavelength data and analysis platforms
- 3. Stable operation of supercomputers

Science question: Origins of matter (chemical elements and dark matter) in the universe

Objectives: Full chemodynamical (6D phase-space coordinate + multi-element chemical abundances) characterization of stellar populations in all Galactic environments as a powerful probe

This proposal:

- satellites, M31/33, and Local Group galaxies

Synergy with multi-wavelength/multi-messenger observations and a wide range of scientific impacts Highly competitive in early 2030s and prepares for science cases in the era of TMT

Summary

Technical assessment, development, and construction of "PFS high-resolution (R~20K) mode" Combining HSC, PFS-LR/MR, and Roman data to obtain stellar spatial distribution, 3D velocities, and chemical abundances ([Fe/H], [a/Fe] ratios) in the outer Milky Way, globular clusters, dwarf

Comparisons with cosmological and chemodynamical simulations of the Milky Way-like galaxies