Life-environmentology, Astronomy, and PlanetarY Ultraviolet Telescope Assembly

> Fuminori Tsuchiya (Tohoku –U) Go Murakami & Atsuchi Yamazaki (ISAS)

-Earth orbiting UV space telescope -Selected as one of candidates for JAXA's M-class (公募型小型) mission #6 in April 2023 -Target launch year: 2032

LAPYUTA

Goal1: habitable environments in the universe

Elements for the habitable environment Hydrogen, Oxygen, Carbon → Advantage of UV spectroscopy

(1) habitable environments in the solar system

- Current geological activity of icy moons
- Atmospheric evolution of terrestrial planets

(2) Exoplanet atmosphere

First detection of upper atmosphere of an Earth-like planet

UV astronomy

(3) Formation of present-day galaxy

- Ubiquitousness of Lyα halos
- The physical origins of Lyα halos (the Cold Streams)

(4) Origin of The heavy element

 The heavy element nucleosynthesis by neutron star mergers & Understanding of the final stage of massive star evolution

Dekel et al. (2009)

Goal2: the origin of matter and space in the universe

LAPYUTA : Concept

Major specifications

- Type: Cassegrain telescope (F32)
- Primary mirror : 60 cm
- Effective area : >350 cm2
- Spatial resolution : 0.1 arcsec
- Spectral range : 110-190 nm
- Spectral resolution : 0.02 nm (0.003 nm)
- FOV : 100 arcsec/180 arcsec
- Bus system : SPRINT bus
- Orbit:~1000 x 2000 km

Scientific instruments

- UV spectrograph (Mid/High resolution)
- UV slit imager

LAPYUTA : Preliminary optical design

Cassegrain telescope: D = 60 cm, effective f = 1920 cm (F32)

Operation Plan

Primary mission period : 3 years

The mission period will be extended up to 9 years if the instruments are in good health.

Baseline

- Solar system bodies: optimized by solar separation angle
 - Jupiter & Mars: around oppositions
 - Venus: around maximum solar elongation angle
- Exoplanets & Astronomical targets
 - Unsuitable periods for the solar system bodies
- Neutron star mergers, Supernova & stellar flares

"Target of Opportunity" with 24-hour operation campaign (3 months/year)

• Public slot (~2 months/year)

Time allocation plan

- Solar system bodies
- Exsoplanet
- Astronomical object
- Public slot
- ToO

Possible collaborations with NAOJ

Science

-<u>Science leads</u> for exoplanet atmosphere (Ikoma) and galaxy/cosmology (Ouchi) research

- -Part of Science Center (Data center, operation of public slot observation)
- -Cooperation with ongoing projects in NAOJ
- e.g.) JASMINE: exoplanet

Solar-C: stellar observation study

Ground telescope: galaxy/cosmology, multi-messsenger astronomy

Technology

Japan has advantages for UV instruments

Heritages from earth & planetary exploretions (e.g. SELENE, Hisaki, Mercury mission, WSO-UV)
<u>Large format UV detector & UV coating : technologies toward NASA HWO</u>

Developing deflection-limit 60cm class space telescopes

- <u>Facilities & know-how for primary mirror and telescope developments</u> including high-precision measurement technology

• Category : JAXA/ISAS M-class

- Selected to Pre-phase A1b!
- Target launch : FY2032

• 2020/12 : Acceptance of WG

• FY2021: Concept study of bus system, development of key technologies, and study of science requirements

• FY2022: Concept study of telescope and development of key technologies

Phase	Team	Activity	FY	FY	FY	FY	FY	FY	FY	FY							
			2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Pre-phase A1a	WG	Concept study		N	ow												
Pre-phase A1b	WG ISAS	Acceleration process					MDR										
Pre-phase A2	Pre-project candidate	Mission definition study						SRR	-								
Phase A1	Pre-project	Concept design						S	DR								
Phase A2	Pre-project industory	Planning definition							PI)r 7							
Phase B	Project	Basic design										-					
Phase C		Detailed design												Laun	ch		
Phase D		Facrication/ Vertification															
Phase E		Initial & nominal operations															