Projects in the NAOJ Gravitational Wave Science Project

Takayuki TOMARU, Director of GWSP **Gravitational Wave Science Project (GWSP)**

→ Gravitational Wave Science Project Office

Schedule & Strategy

R&D

NAOJ GWSP's KAGRA Project

Entire KAGRA project + NAOJ GWSP's roles + NAOJ GWSP's strategies

1. Science Goals and Objectives

Science Goals

The main purpose of this research is to develop GW astronomy/physics and multi-messenger astronomy from an astronomical perspective, which can be developed using ground-based laser interferometric GW telescopes of several tens of Hz to several kHz.

Science Objectives

GW Science + Technology Development

<u>GW Astronomy in Frequency</u>

GW 👄 EMW

<u>Astronomy</u>

•

Scientific Themes

Physics

Black-hole Astronomy

- Stelar mass BH
- Mid mass BH
- Super-massive BH
- Distribution of BH & BH binary
- POP-III, PBH,
 - **Dynamical Formation**
- BH spectroscopy
- Ringdown

Neutron Star Astronomy

- Gravitational Collapse & Neutron Star formation
- Neutron star mass, Massive NS?
- Equation of state of neutron
- Starquake
- Gamma Ray Burst
- Distribution of NS & NS binary

Multi-messenger Astronomy

- Nucleosynthesis of heavy atoms
- Hubble Constant

Cosmology

• Standard Siren

Verification of GR

- Appliable range of GR
- Non-linearity
- Polarization of GW
- Degeneration of masses and inclination angle of binary stars
- GW speed (Mass of graviton)
- Reaction of GW emission
- Quantum Gravity
- GW background (Cosmology)
 - Cosmic Inflation
 - Density of binary stars
 - Cosmological parameters
- Hadron Physics
- Supernova
- Pulsar

LIGO Gallery: https://www.ligo.caltech.edu/image/ligo20211107b

What is an origin of LVK BBHs?

Scenario Selection

- Standard stars (POP I) ? or POP II ?
 - → Our universe is too young to generate so many LVK BBH?
- POP III ?
 - → Kinugawa et al. predict that binary merger of dozens-solar-mass BBHs can be observed present day.

• Primordial BBH ?

→ Quantum fluctuation at the cosmic inflation era can generate many BBHs

 $z>15\,$ observation is required

T. Nakamura, Prog. Theor. Exp. Phys. 2015, arXiv:1607.00897v2 [astro-ph.HE]

2. Science Investigations, Instrumentation and Data

1 International GW Observation

KAGRA collaboration → LIGO-Virgo-KAGRA collaboration (MoU)

← GWSP's Main Science Investigation in this roadmap

Joining to international observation is the top priority for KAGRA. This is also GWSP's top priority.

15°

0°

Hanford-Livingston-Virgo-KAGRA Hanford-Livingston-Virgo HLVK (25Mpc) HLV ^{90% conf. are} 10.3 deg² 90% conf. area= 130.54 deg² 130 deg² 75° 50% conf. area= 37.36 deg² 75° 60° 60° 45°/ 45° Ĥ H v L L 30°/ 30° 15° 20^h 18^h 16^h 14^h 6^h 4^h 2^{h} 12^h 10^h **8**^h 18^h 6^h 22^h 22^h 20^h 16^h 14^h 12^h 10^h 8^h 4^h 2^h **0**° -15° ·15° -30° -30° -45° -45° -60° -60° LIGO: 120Mpc -75° -75° VIRGO: 60Mpc **GW** Polarization KAGRA: 25Mpc

an four *ve* can polarization w inclination ary orbit.

Current Status & Plans of KAGRA

KAGRA joined O4a from May 2023 for a month with 1.3Mpc sensitivity

 \rightarrow We aim to improve the sensitivity of 3~10Mpc in O4b (from spring 2024)

O4b commissioning works are largely delayed by many troubles.

- \rightarrow Need to select to-do-items
- \rightarrow Quick shift to interferometer commissioning is required.

Problems: No sufficient budget, no sufficient human-resources, no sufficient time … And we can not identify real noises without real interferometer operation.

Note Virgo also has much troubles and its sensitivity is still 30Mpc (half of O3). They decided to join O4 from this Dec. even with lower sensitivity.

- **Risk** KAGRA budget can be terminated and GW astronomy in Japan can be disappeared.
 - Without KAGRA and Virgo, event localization will be very poor and astronomy community can not fix follow-up observation area.

2 Data Analysis

Present GWSP staffs: Hardware experts, No data analysis experts

 \rightarrow NAOJ can not lead GW astronomy

 \rightarrow

Risk

Proposal

• Hiring an expert of GW data analysis and computing (Associate Prof. class)

GRID Computing + 1000 CPU cores

- LIGO-Virgo share GW data analysis on Open Science GRID
- LV demand KAGRA to provide 5000 cores on the GRID
- Very small contribution to the LV GRID framework from KAGRA, only 1000 from Taiwan
- We wish to have initiative of GRID and data analysis framework to show NAOJ's visibility.

Accumulated Data in KAGRA

650TB/yr >2PB @2022

KAGRA's CPU

④ Development of Large Sapphire Mirrors

Required Items

- Large crystal growth (40-100kg)
- Small optical absorption (<20ppm/cm)
- Small birefringence ($\Delta n \equiv n_e n_o < 10^{-6}, \theta < 5^\circ$)
- Small defects & small optical scattering
- Super Polish (surface figure < ~nm, roughness < sub Å)
- Multi-layer coating with high mechanical Q

Birefringence Map

Optical Absorption Map

<u>Risk</u>

- Need trial to growth large sapphire crystal
- Nobody knows origin of optical absorption of sapphire at 1064nm wavelength

4. Key Technologies, and Issues

1 International GW Observation: Top Priority

- Noise hunting ← Nobody knows noise sources. Steady noise hunting is required. Time!
- Replacement of two ITMs before O5 (in progress) ← Maybe OK, but very tight schedule
- Hardware Maintenance ← Hard budgetary situation…

2 Data Analysis

- Data Analysis & GRID Computing ← We don't have data analysis & computing experts.
- 1000 core CPU ← Budget & long-term maintenance

③ Frequency Dependent Squeezing for KAGRA ← Wide-band sensitivity improvement

- Squeezer development ← Technically OK, but no budget and no human power
- Filter Cavity ← Technically OK, but no budget and no human power

(4) **Development of Large Sapphire Mirrors** — *Low frequency sensitivity improvement*

- Large crystal growth ← The iLM constructed a large furnace. Try & Error. Time!
- Small optical absorption ← Nobody knows its origin. This is a big uncertainty.

11. Risks

If KAGRA don't join International GW Observation with more than 25Mpc sensitivity:

- The KAGRA project can be terminated.
- Promises in the LVK are broken and trust of Japan is lost.
- LIGOIndia starts

2 Data Analysis

- NAOJ can not lead GW astronomy. Only hardware contribution
- The KAGRA can not provide sufficient CPU to LVK in GRID frame. \rightarrow NAOJ can lead GW data management

③ Frequency Dependent Squeezing for KAGRA

- We will lose technological advantage as a FDS pioneer.
- No improvement of sensitivity in principle
- We will lose Taiwanese and Korean friends \cdots

④ Development of Large Sapphire Mirrors

• No improvement of sensitivity in principle, in particular lower frequency range

5. Threshold Science Mission

$\textcircled{1} International \ GW \ Observation$

- More than25Mpc BNS sensitivity at O5 to give impact of localization improvement by KAGRA
- 80% Duty cycle

2 Data Analysis

• Hiring an expert of GW data analysis and computing

③ Frequency Dependent Squeezing for KAGRA

 Development and implementation of Squeezer to KAGRA to reduce photon shot noise

④ Development of Large Sapphire Mirrors

- Development of 40-100kg sapphire mirror substrates
- Small sapphire crystals with 20ppm/cm in optical absorption at 1064nm wavelength

8. Scientific Traceability Matrix

Science goals	Science objectives	Investigations		Instruments		Data
		Physical parameters	Observables	Design Parameters	Requirement	Requirements
Foundation of GW astronomy and Multi- messenger astronomy	Black-Hole Astronomy	Mass, Spin, Luminosity Distance, Number density	GW waveform	128Mpc BNS range	More than 25Mpc BNS sensitivity @05	Provision of 5000 CPU cores to LVK in GRID
	Multi-messenger astronomy using binary neutron star mergers	Mass, Luminosity Distance, Number density	GW waveform	128Mpc BNS range	More than 25Mpc NBS sensitivity @05	
		Inclination angle of orbit	Polarization	LVK network	More than 4 detectors @05	
		EM wave, Neutrino	Luminosity, Spectrum, Energy, Arrival Time…	J-GEM (Subaru etc.), Rubin, ALMA, Ice- CUBE, SK/HK, Fermi…	Wide FOV, Various wavelength, Various detectors	

7. Project Organization

6. Cost Estimation