## The SOLAR-C Mission: a satellite mission for a high-throughput EUV Imaging Spectroscopy of the Sun

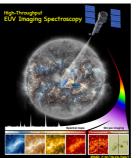


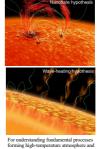
- T. Shimizu, M. Uchiyama, H. Kato, Y. Suematsu, S. Toriumi, H. Bingo, K. Matsuzaki, D. Yamazaki, Y. Kimoto, E. Miyazaki, R. Yamanaka (JAXA)
- H. Hara, R. Ishikawa, F. Uraguchi, T. Oba, T. Okamoto, Y. Katsukawa, Y. Kawabata, M. Kubo, N. Kohara, K. Shinoda, T. Tsuzuki, A. Tei N. Narukage, M. Mitsutake (NAOJ)
- S. Imada (Univ. Tokyo), K. Watanabe (NDA), A. Asai, S. Nagata, T. Yokoyama (Kyoto Univ.), K. Kusano, S. Masuda (Nagoya Univ.) & International SOLAR-C Team

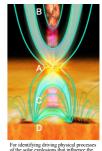
## **Mission Objectives:**

- The SOLAR-C project aims to explore key propositions in space science of how the plasma universe is created and evolves, and
  - how the Sun influences the Earth, other interplanetary objects, and the heliosphere.

## Primary Scientific Goals:


- 1. To understand how fundamental processes lead to the formation of the solar hightemperature atmosphere and the solar wind, and
- 2. To understand how the solar atmosphere becomes unstable, releasing the energy that drives solar flares and eruptions.

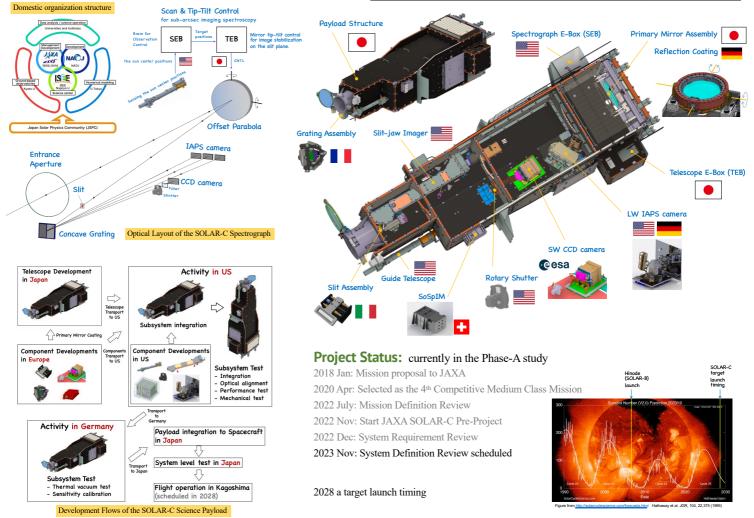

## **Science Payload:**


The SOLAR-C observatory has three science payloads:

- EUV Imaging Spectrograph
- >High-throughput performance over each spectral band in EUV
- · UV Slit-jaw imager
- >To watch the spectrograph slit position and monitor the photosphere and chromospheric dynamics
- EUV Solar Spectral Irradiance Monitor (SoSpIM)
- >To monitor the solar EUV spectral irradiance by the Sun as a star approach

These are developed in an international collaboration of JAXA, NASA, ESA, and a few European countries (France, Germany, Italy, and Switzerland). NAOJ (solar physics group + ATC) has extensively contributed to developing the imaging spectrograph.








| VNA | solar wind acceleratio | n Earth.        |  |
|-----|------------------------|-----------------|--|
| veł | nicle and satellite    | characteristics |  |
|     | JAXA Epsilon-S Rocket  |                 |  |

| Launch vehicle and satellite characteristics |                                            |  |  |  |
|----------------------------------------------|--------------------------------------------|--|--|--|
| Launch Vehicle                               | aunch Vehicle JAXA Epsilon-S Rocket        |  |  |  |
| Satellite mass                               | < 600 kg (nominal)                         |  |  |  |
| Satellite orbit                              | Sun-synchronous orbit of > 600 km altitude |  |  |  |
| Attitude control                             | three-axis stabilized                      |  |  |  |

| Science Payload Characteristics |                                |                                                          |                                                      |  |  |
|---------------------------------|--------------------------------|----------------------------------------------------------|------------------------------------------------------|--|--|
|                                 | Imaging Spectrograph           | Slit-jaw Imager                                          | SoSpIM( Solar Spectral Irradiance Monitor)           |  |  |
| Telescope:                      | Primary mirror diameter: 28 cm |                                                          | No focusing optics:                                  |  |  |
| offset-parabola primary         | Primary mirror fo              | cal length: 280 cm                                       | Aperture $\phi$ 7.6 mm x 3 for each band             |  |  |
| Spatial Resolution (goal)       | 300 km or 0.4 arcsec           | 300 km or 0.4 arcsec                                     | Full Sun                                             |  |  |
| Temporal Resolution             | 0.5 sec                        | 1 sec                                                    | Cadence: 20 Hz                                       |  |  |
| Observing Wavelengths           | 17-22 nm<br>46-128 nm          | Continuum: 283.3 nm<br>Mg I: 285.2 nm<br>Mg II: 279.6 nm | Band A (EUV): 17 – 22 nm<br>Band B (Lyα): 112–128 nm |  |  |
| Field of view                   | 280×280 arcsec <sup>2</sup>    | 280×280 arcsec <sup>2</sup>                              | ±0.77 deg                                            |  |  |
| Wavelength Resolution           | λ/Δλ: 5,000-10,000             | Band pass $\varDelta\lambda$ : ~0.2 nm                   | Δλ~ 5 (16) nm for Band A (B)                         |  |  |
| Plasma $T_e$ to be observed     | 0.02-15 MK                     | 6,000-10,000 K                                           | Band A (B): 106-7.2 K (104 K)                        |  |  |

