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No community of Data Science !?
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Institute of Statistical Mathematics (ISM = ST EIEFATSFR)
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National Astronomical v The Institute of Statistical Mathematics

Observatory of Japan

My office

- Masato Shirasaki
- Kohei Hattori (myself)

We are trying to connect
astronomers and statisticians.

ISM webpage — https://www.ism.ac.jp



https://www.ism.ac.jp

An ideal workplace for astro data scientists. N

Astronomers can use various resources.
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The Institute of Statistical Mathematics

« Seminars

- RXBRACBIFTZIEY I T—BITEFHEHMINTA—Y DHEE
(hosted by M. Shirasaki)
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Data analysis consulting. (First consulting is free.)
Any questions from astronomers are welcome!

- FETYIB L BE R E Dt S F— (hosted by ISM people)

- R EHIE

(Need to pay. Visiting scholar / visiting PhD student)
(I started mentoring an astro PhD student.)

Most importantly, people at ISM
https://www.ism.ac.jp/shikoin/startup/index.html are supportive, and
https://www.ism.ac.jp/shikoin/overview/index.html are HIGHLY interested in ASTRONOMY data.



Trends in ADS papers

ADS papers with “Bayesian” in the abstract. Exponential growth. Time scale ~7 years

Unfamiliar with Bayes? See, e.g.,

[1] Data analysis recipes: Fitting a model to data
https://arxiv.org/abs/1008.4686

[2] Data analysis recipes: Probability calculus for inference
https://arxiv.org/abs/1205.4446

Bayesian
papers


https://arxiv.org/abs/1008.4686
https://arxiv.org/abs/1205.4446

Trends in ADS papers

ADS papers with “Bayesian” in the abstract. Exponential growth. Time scale ~7 years
ADS papers with “Milky Way” in the abstract.

Unfamiliar with Bayes? See, e.g.,
[1] Data analysis recipes: Fitting a model to data
https://arxiv.org/abs/1008.4686
[2] Data analysis recipes: Probability calculus for inference
Milky Way papers https://arxiv.org/abs/1205.4446

Bayesian
papers


https://arxiv.org/abs/1008.4686
https://arxiv.org/abs/1205.4446

Trends in ADS papers

ADS papers with “Bayesian” in the abstract. Exponential growth. Time scale ~7 years

ADS papers with “neural net” in the abstract. Exponential growth.
After 2015, the time scale iIs ~2.5 years

T Bayesian &
® Neural net

Neural net
papers

Article Count
&
+

Bayesian
papers oo

2000 2005 2010 2015 2020
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Trends in ADS papers

ADS papers with “Bayesian” in the abstract.

ADS papers with “neural net” in the abstract. Exponential growth.
After 2015, the time scale is ~2.5 years

Inflation of ML universe.

Neural net

papers Japanese PhD course ~ 5 years

Are we ready to train PhD student
Bayesian in this expansion of the ML world?

papers



Trends in ADS papers

ADS papers with “Bayesian” in the abstract.

ADS papers with “neural net” in the abstract. Exponential growth.
After 2015, the time scale iIs ~2.5 years
(1) (2)

Neural net (1) Back propagation method [E2Z= LI ]
papers
Bayesian (2) Deep learning (AlexNet) [REZE]
papers

New Speed-up of
techniques science




History of science

1. Empirical science
In the last ~1000s of years

2. Theoretical science
in the last ~100s of years

3. Computational science
In the last several decades

PARADIGM
DATA-INTENSIVE SCIENTIFIC DISCOVERY

4. Data exploration
Now
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Today'’s talk

* (1) Era of big data

* (2) Dimensionality reduction
* (3) Sparsity

* (4) Bayesian analysis

* (6) Machine learning

* (6) Neural network

* (7) Data challenge



Setting the stage

* (1) Era of big data

* (2) Dimensionality reduction
* (3) Sparsity

* (4) Bayesian analysis

* (6) Machine learning

* (6) Neural network

* (7) Data challenge



Era of Big Data
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Pan-STARRS DARK ENERGY

SURVEY

Keywords for astro observations
- wide-field

- deep

- high-resolution

- high-dimensional (many bands)

- time-domain

- high-precision

- large data volume (e.g.,
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Most data will never be “seen” by eye.

Need to automate
data acquisition / reduction / analysis
... Data science challenge



Main part

Trends in * (2) Dimensionality reduction

statistical mathematics

* (3) Sparsity

* (4) Bayesian analysis

Trends In
machine learning

Robustness / reliability
of new methods



* (1) Era of big data
Trends in Nk (2) Dimensionality reduction
statistical mathematics ) (3) Sparsity

* (4) Bayesian analysis

* (6) Machine learning

* (6) Neural network

* (7) Data challenge



Dimensionality reduction i g =

N-dimensional “data” — low-dimensional “feature”

Simpler description
# “Manifold learning”

2D manifold in 3D-space

2D representation
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... 184-dim data
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* (1) Era of big data
Trends in Nk (2) Dimensionality reduction
statistical mathematics ) (3) Sparsity

* (4) Bayesian analysis

* (6) Machine learning

* (6) Neural network

* (7) Data challenge



Sparse Modeling

Easy case:

(# of model params) < (# of data points)

N<M
What if ...
(# of model params) > (# of data points)
N>M

In general, it fails (degenerate params).
But there is a hope, If the model is sparse.

Tibshirani (1996)




Sparse Modeling for image data

o Fourier transformation of a radio image
Visibility

Model brightness (B)
has N pixels.

Often, we have M < N.
No unique solution for £3.

SSNEEEENEEEEYTIEESE .

M data points for :
the observed v(U,V) Py
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Sparse Modeling I
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If we assume that the image is sparse (many zeros in beta),

we can obtain a LASSO solution:
residual penalty

f = argmin —||v Fﬁnzmz 5

By adopting a large lambda, we obtain a sparse solution.
(Adequate lambda depends on the science case. Need cross-validation.)




Sparse Modeling

Ground truth LASSO

initial image beam—-convolved image super—resolution image
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Honma, Akiyama, Uemura, lkeda (2014)



Sparse Modeling To believe or not to believe; blind test is important.

M87’s black hole shadow Data challenge (Mock analysis)

Ground truth

oo N

"~
-

Reconstructed image

(GA)

Reconstructed image
MS8T* April 11, 2017

Katherine L. Bouman PhD thesis (2017)

Radio telescopes opened a new window
EHT Collaboration, Akiyama et al. (2019) into SMBHSs and possibly IMBHs (ALMA, SKA, ngVLA).




Sparse Modeling for time-series data

flux: y(f) = ZA]. exp(ic;?)
J

‘ A. ‘2 least-square fit
J (fitting the noise !!)

Kato & Uemura (2012)*
Q).

Regular variable stars (e.g., Cepheids, RR Lyrae) ]
have only few frequencies with non-zero amplitude.

2
LASSO in power-spectrum space. ‘ Aj ‘
>> Simplest representation of the light curve. LASSO

Bellinger, Wysocki, Kanbur (2016)

LLASSO 75 observations a)
{ J

Magnitude

* Data taken from VSNET.



Sparse Modeling

FREF—HB 2R
(1954 - 2012)

THEhaA NG NT A
(ACA)

One of the first persons in astronomy
who envisioned the importance of sparse modeling in radio interferometry.



Sparse matrix ... Tough example

JASMINE will stare at the MW center region.
JASMINE will

- observe 1e5 stars
- take photo for 80 x 2000 times for each star (Paparazzi !) g
- measure N=1e7 params (including satellite attitude)

If we are to make the most of JASMINE,
we nheed to solve a huge matrix inversion problem

1019 % 107 matrix
—

o (o) (@I A | ()

1010 O¢p | = 5@ + g%ff %fﬁp 3,%]7 p/\;ﬁ/\ 1()7
v/ \oo) \Goff o andl o adl) |, \ea =i
o ~ o0 + D* Ap

Although the design matrix is sparse, it will be tough to solve it quickly.
>> Need a Parallel Computing LSQR (Least Squares with QR-factorization) method?



* (1) Era of big data
Trends in Nk (2) Dimensionality reduction
statistical mathematics ) (3) Sparsity

* (4) Bayesian analysis

* (6) Machine learning

* (6) Neural network

* (7) Data challenge



Trends in ADS papers

ADS papers with “Bayesian” in the abstract. Exponential growth. Time scale ~7 years

Unfamiliar with Bayes? See, e.g.,

[1] Data analysis recipes: Fitting a model to data
https://arxiv.org/abs/1008.4686

[2] Data analysis recipes: Probability calculus for inference
https://arxiv.org/abs/1205.4446

Bayesian
papers


https://arxiv.org/abs/1008.4686
https://arxiv.org/abs/1205.4446

Bayesian analysis

Only 3 topics (to save time):

(1) MCMC in high-dimensional space is tricky,
especially if the posterior distribution is multi-modal.
>> Try nested sampling (Skilling 2004). [e.g., Hikage et al. 2019]

(2) Bottleneck in MCMC is the computational cost in the likelihood.
>> Simplify the likelihood function (e.g., interpolation) [e.g., Nishimichi et al. 2019]
>> Reduce the effective data size [e.g., Hattori et al. 2021]

(3) “Likelihood” is sometimes hard to define (e.g., likelihood of N-body model?)
>> Try ABC “Approximate Bayesian Computation”
= MCMC-like analysis for the summary statistics



* (1) Era of big data

* (2) Dimensionality reduction
* (3) Sparsity

* (4) Bayesian analysis

machine learning

Trends in |: (5) Machine learning

* (6) Neural network

* (7) Data challenge



Machine learning

Machine learning iIs the science of getting computers to act

without being explicitly programmed. — Andrew Ng

A set of methods that can automatically detect patterns in data,
and then use the uncovered patterns to predict future data,
or to perform other kinds of decision making under uncertainty.

— Kevin P. Murphy

Machine learning is the study of computer algorithms that can
improve automatically through experience and by the use of data.

— Wikipedia



Machine learning

Supervised learning: Based on the “input-output” pairs (test data),

find the function that maps input to output.

Classification Parameter inference Identification

Find strong
lensing images

Spectral analysis
Transients / Variables / (Subaru PFS / GA)

Flares / Micro-lensing / SNe

e D *wd el
'_’ —_—

|l .,‘\ !ﬂ“ Model generation

Kin“r‘

Radio ga'axy types WO L | Chaotic
Photometric redshift : 3-body model

PLASTICC challenge
. efc.

=
~
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Machine learning

Unsupervised learning: Find the pattern in the data without external information.

Clustering Density estimation Anomaly detection

| Extreme Deconvolution
cluster locations

. " & ot -y
o o, o OF St NSO .
- | | ° o - " .
oo o X - > * a8,
e Pl % N
& g v R 2 o
b ok O ) . - R My ¥ o o
o E SR S| S L] .,
7 O od = 9
o P _
1 n X - v =
R 8 4
p- A
* ! »
- S0, 3 L y s % \
. 4 -
a o » > v P &
7 o L oL N = )8 o = \
o @ -
0o H g 6 o U:D €o
= o 1 ®"- o !
i o LR B ¢ ‘leaf’, m>1
% o o )
D¢ ‘ !
gie o ¥ 2% e 2 e - g leaf’, m> 1.5
Be° o o /
B o % o8 o ‘leaf’, ™ > 2 -

~30 .7 o ‘leaf’, 7> 3

220 215 210 205 200 195 190 185

Pair-instability SNe /
ST e Hypervelocity stars /
Deriving precise CMD / Gravitational lensing

Deriving 3D dust map

Find open clusters /
Over-density of galaxies

... etc.



Machine learning

Neural network

| methods
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Figure credit: https://en.wikipedia.org/wiki/DBSCAN

Clustering

One of the fast / successful / easy-to-implement methods:

DBSCAN (Density-based spatial clustering of applications with noise)

One of the most widely used clustering method.
Finding data points within a given radius € .
N Circles which encloses less than N_min are ignored.
of clusters is automatically determined.

N _min =4.
Only red circles form the cluster.

~ Similar to “friend-of-friend” method in N-body simulation.


https://en.wikipedia.org/wiki/DBSCAN

Clustering
Discovering open clusters with Gaia data

Stars in an open cluster have similar position and velocity (X, V)
>> DBSCAN can discover open clusters with Gaia’s astrometric data.
>> There are ~2000 open clusters within 1 kpc from the Sun.

* This Work

60 60 Cantat-Gaudin+2018

‘leaf’, m> 1
‘leaf’, m > 1.5
- ‘leaf’, m> 2

-60 ~60

o Cleaf’, m> 3

220 215 210 205 200 195 190 185

| (deg) | (deg)

Kounkel & Covey (2019



Density estimation

Color-magnitude diag

1 Observed Distribution
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1 Extreme Deconvolution

resampling
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1 Extreme Deconvolution

cluster locations
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Raw data

ram (CMD) of nearby stars in Gaia (DR1) data.

... Blurred CMD due to distance error

Reconstructed CMD
... Gaussian Mixture model
after deconvolution of error

Anderson et al. (2017)
[see also Leistedt et al. 2017]



Trends In
machine learning

* (1) Era of big data
* (2) Dimensionality reduction
* (3) Sparsity
* (4) Bayesian analysis

|:- (5) Machine learning

* (6) Neural network

* (7) Data challenge

23



Machine learning

Classical methods Neural network

<
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X~
. Artificial Neural Network
- Convolutional Neural Network
Auto-encoder

Generative Adversarial Network (GAN¥)
* Masato Shirasaki is an expert of GAN



Neural network

weighted sum of
input nodes

y=f(b+2w,-xi)

f: activation function

T SB hidden hidden layers = g : |
layer layers

Many parameters (weights)
allow large flexibility.
We find the optimal weights by training.

If N>M, this can be seen as
a dimensionality reduction.

Figure credit: https://www.knime.com/blog/a-friendly-introduction-to-deep-neural-networks



https://www.knime.com/blog/a-friendly-introduction-to-deep-neural-networks
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3-body problem in math.

x,(T) x1(0)
o (T) x(0)
o (T) x3(0)
v, (T) B V1)
Vz(T) VZ(O)
vy(T) V5(0)
I

Operator of
“solving equation of motion”

Newton vs the machine: solving the chaotic three-body
problem using deep neural networks

Philip G. Breen!*, Christopher N. Foley? *#, Tjarda Boekholt?
and Simon Portegies Zwart®

Breen et al. (2020)

(step 1) Solve 3-body problem

with various initial conditions.
(step 2) Train the NN.
(step 3) NN solves 3-body problem

with any initial condition quickly.



CNN — Convolutional Neural Network

raw image edge-detecting filter
Convolution

X

Kl 1 K1




CNN — Convolutional Neural Network

raw image edge-detecting filter Smooth components disappear.
EIEIEIEIE]
Convolution

* —

B 3 2 2
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CNN — Convolutional Neural Network

raw image edge-detecting filter Smooth components disappear.
Convolution
* —

Convolutions extract the local pattern (e.g., “edge”) in the data.




CNN — Convolutional Neural Network

raw image edge-detecting filter Smooth components disappear.
ElEIEIEIEl
Convolution
* —
=i i B B K
ElEIEIEIEl

Convolutions extract the local pattern (e.g., “edge”) in the data.
The extracted information is translation invariant.
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—_— i Krizhevsky et. al. (2012)
CNN — Convolutional Neural Network AlexNet 2012 [zheveetal @h2)

output
array

0.01
0.00

| P(d
0.94| 2 0n

0.02



— i Krizhevsky et. al. (2012)
CNN — Convolutional Neural Network AlexNet 2012 [izheveiy et al @02

?:Wlutlm;:a::r
0.01
mag output |0.00
- darray : P(dog)
image ety [ el . 0.94 | _ 0_9%
(C) L\Sjt"b : I % Layer 1 filters rsﬁn Sof:‘:no:x 0.02

Convolution = Extract “local patterns” that are translation invariant.
Various filters are used = Various patterns are extracted.

(original work) input = 2D image ... (N x N x 3) array for RGB color image



— i Krizhevsky et. al. (2012)
CNN — Convolutional Neural Network ~ AlexNet 2012 [izhewsivena.@nd)

0.01

input output (0.00
. arra ' | P(spiral
Image y 0.94 isg.lgi)

t ; - 0.02

Convolution = Extract “local patterns” that are translation invariant.
Various filters are used = Various patterns are extracted.

(original work) input = 2D image ... (N x N x 3) array for RGB color image
(astro works) input = 2D image ... (N x N x 1) array for gray-scale image
(astro works) input = 1D vector ... 1D spectra



CNN — Convolutional Neural Network

2D image (galaxy) CNN classification

Tadaki et al. (2020) '

~
(2]
()

{000 ---000
E 2
1000---000|H

galaxy
morphology

Inference

1D stellar spectrum (stellar physics)

R AT 4= 8 Leung & Bovy (2019)
chemical
T el @ T MENLRREE [9]|8] = abundances
1D power spectrum (asteroseismology)
i r * Ik Hon et al. (2017) inference
a3 |2 T BEEE (32 stellar
e 7 T o T parameters
- Frequency (uHz)
1D light curve (dimming stars - T It
J ( g stars) Tajiri et al. (2020) ), Id€ntification
ggﬁ Find a specific

type of stars



CNN — Convolutional Neural Network

2D image (galaxy)

1D stellar spectrum (stellar physics)

— ‘“Translational invariance”
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CNN is suited for natural science.
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“Inflation of ML universe”



Some concerns about neural network

NN is sometimes described as a “black box.”

* Bias In the test data
* Interpretability of NN — “Explainable Al” (XAl)
* Uncertainty quantification — Bayesian NN

* High degrees of freedom — No unique solution.



Bias In the test data

Example Fabbro et al. (2018)

.,»-_;__ — Conv. Conwv. Max FU"y FU"y OUtpUt

layer layer 1 layer 2 pooling connected connected layer
(1x7214) (4 @ 1x7214) (16 @ 1x7214) (16 @ 1x1803) (|1a)3(/2eg;) (|$)¥1e;82) (1x3)
(1) Train a NN to learn the relationship
between [X/H] and spectra using APOGEE spectra i
Result:
____ Metal Poor yIf CO Cul
>ealer 1: 0. 1dex ‘ ' NNSs prioritize different lines to infer [X/H],
Metal Rich . -
— Scale: 1: 0.0adex | ) RN, MMMW B O N because synthetic spectra ;é APOGEE

16000
Wavelength(A)

A bias in test data will affect performance.

(2) Train the same NN to learn the relationship
between [X/H] and spectra using synthetic spectra

Metal Poor

- Scale:1:0.5dex ' When designing stellar spectra pipeline,
| Rich | . . . .
scate: 1+ 0.050ex Ut L /el e AL, pocdbd s A this bias should be kept in mind.

Wavelength(A)




Modified in the public version

Interpretability of NN
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A funny example

Train NN to learn the relationship

between chemistry ([Fe/H]) and observation data using

(1) observation fits file (spectra, date, observer’s name etc..)
(2) [X/H] from another catalog
... Supervised learning.

Result:
NN learned how to measure [Fe/H] from fits file.

This result might be wrong!

NN might learn the correlation between observer's name and chemistry.)
(“Dr. AAA only observes low-[Fe/H] stars,” etc.)

Do not use NN as a black-box.



Trade-off: interpretability vs accuracy

accuracy

4 Highly Accurate Models
@ Neural Networks -Non-linear relationship
-Non-smooth relationship
-Long computation time
@ Random Forest :
Highly Interpretable Models
-Linear and smooth
@ Support Vector Machine relationships
>
O . -Easy to compute
© @ Graphical Models
)
g @ K-Nearest Neighbors

@ Dccision Trees

@ Linear Regression

@ Classification Rules

 Iinterpretability

Interpretability

From “Machine Learning for 5G/B5G Mobile and Wireless Communications: Potential, Limitations, and Future Directions*



Toward explainable Al: Layer-wise Relevance Propagation

“Red part of the image
was useful for
classification”

Uniform LRP

o || o ol ol o o~ e ev o~ ev ] ev SNRNS
— || — NN N wl|lwvl]w ollovl]lw QIIKIE
n® CShkChEE ChikChkE OH®AR® chichic)
e lle ikl el le ol |l » ==
X X X X X X X X X X X < < <
Sl & S| H[] & Sl H[] & Sl S| & S X X
LRP-~ < LRP-¢ { LRP-0
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* (1) Era of big data

* (2) Dimensionality reduction
* (3) Sparsity

* (4) Bayesian analysis

* (5) Machine learning

* (6) Deep learning

Robustness / reliability [- (7) Data challenge

of new methods




Data Challenge (Test to validate methods)

 Photometric LSST Astronomical Time-Series Classification Challenge (xttps/wwwkaggie.com/e/pLasticc-2018)

o EXOp|anet: ARIEL MiSSiOﬂ Data ChallengeS (https://www.ariel—datachalIenge.space/ML/documentation/description)

 Radio astronomy: SKA Data Challenge Competition #1 (htps/zastronomers.skatelescope.org/ska-science-data-challenge-1/)
* Microlensing Data Challenge ( ntps//microtensing-source.org/data-chatienge/ )

 Galaxy Zoo: galaxy morphology classification challenge ( nttps/ww.kaggle.com/c/gataxy-zoo-the-gataxy-chalienge )
 Mapping dark matter competition ( ntps/mwww.kaggie.com/c/mdmsoverview )

¢ Strong Iensing data Challenge ( https://bolognalensfactory.wordpress.com/home-2/b|fkids-Iens-finding-challenge/)

¢ Gaia Cha"enge (http://astrowiki.ph.surrey.ac.uk/dokuwiki/doku.php)


https://www.kaggle.com/c/PLAsTiCC-2018
https://www.ariel-datachallenge.space/ML/documentation/description
https://astronomers.skatelescope.org/ska-science-data-challenge-1/

Photometric LSST Astronomical Time-Series Classification Challenge

Kaggle-based competition of classifying mock LSST data

with generous prize money :)

1st prize: Kyle Boone (Astro PhD student)
2nd prize: Mike & Silogram (Non-astro group)
3rd prize: Major Tom, mamas & nyanp (Non-astro group)

Inflation of ML universe.

Is our community open to data scientists,
given the need for ML talents?

Data challenges for

- mock ULTIMATE-Subaru data?

- mock JASMINE data?

- mock [your favorite project] data?

... These will galvanize young/enthusiastic
members of astro/non-astro community!!



Concluding remarks: Era of Big Data

Natural language tasks
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Concluding remarks: Era of Big Data

It’s NOT who has the best algorithms that wins.
It’s who has the most data.
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Concluding remarks: Era of Big Data

We have the biggest data.

We need a scope for fostering data scientists,
because the future of NAOJ is on the shoulders of
grad students, postdocs, and young researchers.
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