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日本天文学会2021年春季年会プログラム
期　日　　2021 年 3月 16 日（火）～  3 月 19 日（金）
場　所　   オンライン開催
電　話　　090 - 4387 - 6893 (学会事務局 ）   ＜使用期間  2021 年 3月 15 日（月）～  3 月 19 日（金）＞
E-Mail　　nenkai-committee@asj.or.jp ( 年会実行委員会 ）

月日 会場 　9　　　　10　　　　11　　　　12　　　　13　　　　14　　　　15　　　　 16　　　　17　　　　18　　　　19
3月15日
（月） 記者会見 理事会

3月16日
（火）

A Z3. 計算宇宙惑星

昼　休　み
11:40~13:00

Z3. 計算宇宙惑星

ポスター
特 別

セッション
（X線分光撮像衛星）

B W. コンパクト天体 W. コンパクト天体
C S. 活動銀河核 S. 活動銀河核
D V2. 観測機器(光赤・重) V2. 観測機器(光赤・重)
E V3. 観測機器(X線・γ線) V3. 観測機器(X線・γ線)
F P2. 原始惑星系円盤 P2. 原始惑星系円盤
G Q. 星間現象 Q. 星間現象
H

3月17日
（水）

A Z3. 計算宇宙惑星

昼　休　み
11:40~13:00

Z1. 天文データ科学

特 別
セッション

（日本学術会議と
日本天文学会）

天文教育
フォーラム

B W. コンパクト天体 W. コンパクト天体
C R. 銀河 R. 銀河
D V2. 観測機器(光赤・重) V2. 観測機器(光赤・重)
E V3. 観測機器(X線・γ線) V3. 観測機器(X線・γ線)
F P2. 原始惑/P1.星形成 P1. 星形成
G Q. 星間現象 Q. 星間現象
H Y. 教育・広報・他 Y. 教育・広報・他

3月18日
（木）

A Z1. 天文データ科学

昼　休　み
11:40~13:00

Z1. 天文データ科学

ポスター
会 員
全体集会

B W. コンパクト天体 N. 恒星進化
C X. 銀河形成・進化 X. 銀河形成・進化
D V1. 観測機器 (電波) V1. 観測機器 (電波)
E T. 銀河団 U. 宇宙論
F P1. 星形成 P1. 星形成
G M. 太陽 M. 太陽
H P3. 惑星系

3月19日
（金）

A Z2. ngVLAの天文学

昼　休　み
11:40~13:00

(代議員総会)

Z2. ngVLAの天文学

ポスター 受賞記念講演

B N. 恒星進化 N. 恒星進化
C X. 銀河形成・進化 X. 銀河形成・進化
D V1. 観測機器 (電波) V1. 観測機器 (電波)
E
F
G M. 太陽 M. 太陽
H P3. 惑星系 P3. 惑星系

3月20日
（土） ジュニアセッション

　9　　　　10　　　　11　　　　12　　　　13　　　　14　　　　15　　　　 16　　　　17　　　　18　　　　19
※セッション ( 午前 ) 09:30 ～ 11:40
※セッション ( 午後 ) 13:00 ～ 15:10
※ポスターセッション 15:10 ～ 16:10
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Data Science Session 
(1st time in history, I guess.)

Instrument Sessions 
(long history)

2

日本天文学会2021年春季年会プログラム
期　日　　2021 年 3月 16 日（火）～  3 月 19 日（金）
場　所　   オンライン開催
電　話　　090 - 4387 - 6893 (学会事務局 ）   ＜使用期間  2021 年 3月 15 日（月）～  3 月 19 日（金）＞
E-Mail　　nenkai-committee@asj.or.jp ( 年会実行委員会 ）

月日 会場 　9　　　　10　　　　11　　　　12　　　　13　　　　14　　　　15　　　　 16　　　　17　　　　18　　　　19
3月15日
（月） 記者会見 理事会

3月16日
（火）

A Z3. 計算宇宙惑星

昼　休　み
11:40~13:00

Z3. 計算宇宙惑星

ポスター
特 別

セッション
（X線分光撮像衛星）

B W. コンパクト天体 W. コンパクト天体
C S. 活動銀河核 S. 活動銀河核
D V2. 観測機器(光赤・重) V2. 観測機器(光赤・重)
E V3. 観測機器(X線・γ線) V3. 観測機器(X線・γ線)
F P2. 原始惑星系円盤 P2. 原始惑星系円盤
G Q. 星間現象 Q. 星間現象
H

3月17日
（水）

A Z3. 計算宇宙惑星

昼　休　み
11:40~13:00

Z1. 天文データ科学

特 別
セッション

（日本学術会議と
日本天文学会）

天文教育
フォーラム

B W. コンパクト天体 W. コンパクト天体
C R. 銀河 R. 銀河
D V2. 観測機器(光赤・重) V2. 観測機器(光赤・重)
E V3. 観測機器(X線・γ線) V3. 観測機器(X線・γ線)
F P2. 原始惑/P1.星形成 P1. 星形成
G Q. 星間現象 Q. 星間現象
H Y. 教育・広報・他 Y. 教育・広報・他

3月18日
（木）

A Z1. 天文データ科学

昼　休　み
11:40~13:00

Z1. 天文データ科学

ポスター
会 員
全体集会

B W. コンパクト天体 N. 恒星進化
C X. 銀河形成・進化 X. 銀河形成・進化
D V1. 観測機器 (電波) V1. 観測機器 (電波)
E T. 銀河団 U. 宇宙論
F P1. 星形成 P1. 星形成
G M. 太陽 M. 太陽
H P3. 惑星系

3月19日
（金）

A Z2. ngVLAの天文学

昼　休　み
11:40~13:00

(代議員総会)

Z2. ngVLAの天文学

ポスター 受賞記念講演

B N. 恒星進化 N. 恒星進化
C X. 銀河形成・進化 X. 銀河形成・進化
D V1. 観測機器 (電波) V1. 観測機器 (電波)
E
F
G M. 太陽 M. 太陽
H P3. 惑星系 P3. 惑星系

3月20日
（土） ジュニアセッション

　9　　　　10　　　　11　　　　12　　　　13　　　　14　　　　15　　　　 16　　　　17　　　　18　　　　19
※セッション ( 午前 ) 09:30 ～ 11:40
※セッション ( 午後 ) 13:00 ～ 15:10
※ポスターセッション 15:10 ～ 16:10



Institute of Statistical Mathematics (ISM = 統計数理研究所)

ISM webpage — https://www.ism.ac.jp

My office

- Masato Shirasaki 
- Kohei Hattori (myself)

立川三鷹

We are trying to connect 

astronomers and statisticians.

https://www.ism.ac.jp


An ideal workplace for astro data scientists.

https://www.ism.ac.jp/shikoin/startup/index.html

・共同研究スタートアップ 
Data analysis consulting. (First consulting is free.) 
Any questions from astronomers are welcome!

・受託研究員制度 
(Need to pay.  Visiting scholar /  visiting PhD student)

(I started mentoring an astro PhD student.)

https://www.ism.ac.jp/shikoin/overview/index.html

Astronomers can use various resources.

・Seminars 
- 天文観測におけるビッグデータ解析と宇宙論パラメータの推定  
   (hosted by M. Shirasaki) 

- 統計物理と統計科学のセミナー (hosted by ISM people)

Most importantly, people at ISM  
are supportive, and  
are HIGHLY interested in ASTRONOMY data.



ADS papers with “Bayesian” in the abstract. 
ADS papers with “Milky Way” in the abstract. 
ADS papers with “neural net” in the abstract.

Trends in ADS papers
Exponential growth. Time scale ~7 years

Bayesian 
 papers

Unfamiliar with Bayes? See, e.g., 

[1] Data analysis recipes: Fitting a model to data

  https://arxiv.org/abs/1008.4686

[2] Data analysis recipes: Probability calculus for inference

  https://arxiv.org/abs/1205.4446

https://arxiv.org/abs/1008.4686
https://arxiv.org/abs/1205.4446


ADS papers with “Bayesian” in the abstract. 
ADS papers with “Milky Way” in the abstract. 
ADS papers with “neural net” in the abstract.

Trends in ADS papers
Exponential growth. Time scale ~7 years

Milky Way papers

Bayesian 
 papers

Unfamiliar with Bayes? See, e.g., 

[1] Data analysis recipes: Fitting a model to data

  https://arxiv.org/abs/1008.4686

[2] Data analysis recipes: Probability calculus for inference

  https://arxiv.org/abs/1205.4446

https://arxiv.org/abs/1008.4686
https://arxiv.org/abs/1205.4446


ADS papers with “Bayesian” in the abstract. 
ADS papers with “Milky Way” in the abstract. 
ADS papers with “neural net” in the abstract.

Trends in ADS papers
Exponential growth. Time scale ~7 years

Exponential growth.  
After 2015, the time scale is ~2.5 years

Bayesian 
 papers

Neural net 
papers



ADS papers with “Bayesian” in the abstract. 
ADS papers with “Milky Way” in the abstract. 
ADS papers with “neural net” in the abstract.

Trends in ADS papers

Bayesian 
 papers

Neural net 
papers

Exponential growth.  
After 2015, the time scale is ~2.5 years

Inflation of ML universe.

Japanese PhD course ~ 5 years 
Are we ready to train PhD student 
in this expansion of the ML world?



ADS papers with “Bayesian” in the abstract. 
ADS papers with “Milky Way” in the abstract. 
ADS papers with “neural net” in the abstract.

Trends in ADS papers

(1) (2)

(1) Back propagation method [誤差逆伝播法 ]

(2) Deep learning (AlexNet) [深層学習]Bayesian 
 papers

Neural net 
papers

New  
techniques 

Speed-up of  
science

Exponential growth.  
After 2015, the time scale is ~2.5 years



1. Empirical science 
    in the last ~1000s of years 

2. Theoretical science  
    in the last ~100s of years 

3. Computational science 
    in the last several decades 

4. Data exploration 
    Now 

History of science



・(1) Era of big data 
・(2) Dimensionality reduction 
・(3) Sparsity 
・(4) Bayesian analysis 
・(5) Machine learning 
・(6) Neural network 
・(7) Data challenge

Today’s talk



・(1) Era of big data 
・(2) Dimensionality reduction 
・(3) Sparsity 
・(4) Bayesian analysis 
・(5) Machine learning 
・(6) Neural network 
・(7) Data challenge

Setting the stage



Era of Big Data

Keywords for astro observations 
- wide-field

- deep

- high-resolution

- high-dimensional (many bands)

- time-domain

- high-precision

- large data volume (e.g., radio telescope)

Data are becoming larger / more complex. 
Most data will never be “seen” by eye. 

Need to automate  
data acquisition / reduction / analysis

… Data science challenge



・(1) Era of big data 
・(2) Dimensionality reduction 
・(3) Sparsity 
・(4) Bayesian analysis 
・(5) Machine learning 
・(6) Neural network 
・(7) Data challenge

Trends in  
statistical mathematics

Trends in  
machine learning

Robustness / reliability  
of new methods

Main part



・(1) Era of big data 
・(2) Dimensionality reduction 
・(3) Sparsity 
・(4) Bayesian analysis 
・(5) Machine learning 
・(6) Neural network 
・(7) Data challenge

Trends in  
statistical mathematics



Dimensionality reduction
N-dimensional “data” → low-dimensional “feature”

28x28 = 784 pixels 

… 784-dim data

UMAP

2D manifold in 3D-space 2D representation

0
6

3

5 9

81
7

2
4

Techniques 
- Self-Organizing Map  
  (SOM) 
- Isomap 
- UMAP

Simpler description

“Manifold learning”

“特徴量”



・(1) Era of big data 
・(2) Dimensionality reduction 
・(3) Sparsity 
・(4) Bayesian analysis 
・(5) Machine learning 
・(6) Neural network 
・(7) Data challenge

Trends in  
statistical mathematics



Sparse Modeling

In general, it fails (degenerate params). 
But there is a hope, if the model is sparse.

(# of model params) > (# of data points)
What if …

N > M

Easy case:
(# of model params) ≤ (# of data points)

N ≤ M

1.1. Example: Polynomial Curve Fitting 7
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Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w⋆)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3 , from
Figure 1.4.
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Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w⋆)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3 , from
Figure 1.4.

Tibshirani (1996)
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Visibility

Dirty Beam and Dirty Image
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Fourier transformation of a radio image

M data points for  
the observed v(U,V)

v(U, V) =

Often, we have M < N. 
No unique solution for β.

Model brightness (β)  
has N pixels.

incomplete sampling
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for image data



Sparse Modeling

̂β = arg min [ 1
2

∥v − Fβ∥2
2 + λ∑

i

|βi |]
By adopting a large lambda, we obtain a sparse solution. 
(Adequate lambda depends on the science case. Need cross-validation.)

we can obtain a LASSO solution:

v1
⋮
vM

=

β1
⋮
⋮
⋮
⋮
βN

If we assume that the image is sparse (many zeros in beta), 

residual penalty
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Fig. 5. Simulated UV coverage of M 87 with six-station sub-mm VLBI
array of EHT. Here it is assumed that observations are conducted at an
elevation larger than 20◦ at each station.

Figure 5 shows EHT’s UV-coverage plot for M 87 (at a
source declination of δ = +12◦). Here we assume that the
source is observed for an elevation angle beyond 20◦ at each
station. As seen in figure 5, the maximum baseline length is
around 9000 km, and hence for an observing wavelength
of 1.3 mm, this array provides an angular resolution of
∼ 30 µas. In this case, the angular resolution (the standard
beam size) could be still larger than the expected size of the
shadow diameter (in particular for the case of a small mass
and/or high spin black hole). Hence it could be difficult to
resolve the shadow based on the standard imaging synthesis
in case of the small mass. Therefore, it is of great interest to
test if the super-resolution technique effectively boosts the
image resolution to resolve the black hole shadow.

5.2 Results

We conducted simulations for two cases of the black
hole shadow of M 87: a ring-like shadow and a crescent
shadow (both with a diameter of 20 µas). Here, in order
to emulate real observations, we assume that visibilities are

Fig. 6. Imaging results for simulated EHT observations of M 87’s black hole shadow. The upper panels correspond to the ring case, and the lower
panels to the crescent case. From the left to the right, the panels show an initial image, convolution with the standard synthesized beam, and the
solution with sparse modeling. Each image has 64 × 64 grids with a grid size of 1 µas. The initial images as well as super-resolution reconstructed
images are convolved with a restoring beam that is finer by a factor of 4 than the standard synthesized beam.
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EHT Collaboration, Akiyama et al. (2019)

M87’s black hole shadow
Visibility data

Reconstructed image

Ground truth

Reconstructed image

Sparse Modeling

Data challenge (Mock analysis)

Katherine L. Bouman  PhD thesis (2017)

To believe or not to believe; blind test is important.

Radio telescopes opened a new window  
into SMBHs and possibly IMBHs (ALMA, SKA, ngVLA).



for time-series data

4 Bellinger, Wysocki & Kanbur
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Figure 3.: Sensitivity analysis of a simulated RR Lyrae light curve (dashed gray
line). When the number of observations (red points) is large (top), both least
squares (solid black line, left) and LASSO (solid black line, right) fits perform
well. When the number of observations is small (bottom), however, the least
squares fit fails catastrophically and only LASSO still works as desired.
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Sparse Modeling

Regular variable stars (e.g., Cepheids, RR Lyrae)  
have only few frequencies with non-zero amplitude.


LASSO in power-spectrum space. 
>> Simplest representation of the light curve. 

Bellinger, Wysocki, Kanbur (2016)

flux: y(t) = ∑
j

Aj exp(iωjt)

Successful LASSO for RR Lyrae

Kato & Uemura (2012)*
ωj

|Aj |
2

ωj

|Aj |
2

LASSO

least-square fit 
(fitting the noise !!)

* Data taken from VSNET.



Sparse Modeling

One of the first persons in astronomy  
who envisioned the importance of sparse modeling in radio interferometry.

森田耕一郎 教授 
(1954 - 2012)



Sparse matrix … Tough example

If we are to make the most of JASMINE,  
we need to solve a huge matrix inversion problem 

Small-JASMINE SJ-TN-ZAH-WL-007-1

problem P . And although we are, in contrast to the astrometric parameters

pastrometric, not really interested in their actual values, the nuisance parame-

ters are, in the case of Small-JASMINE, far more numerous than the actual
astrometric parameters. And their values must be known accurately and pre-
cisely in order to derive accurate and precise values for the few astrometric

parameters of interest.

1.1 Observation Equation and Design Matrix

In general the function fP will be non-linear. If an estimate p̂ for the un-
knowns p exists, the problem P can, however, be linearised around p̂ using
a Taylor expansion and then neglecting all terms of second order and higher.

In the simple one-dimensional case this gives

o` = fP
` (p) with p = p̂+�p̂ (3)

=
1X

n=0

1

n!

dn

dpn
fP
` (p)

����
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(p� p̂)n (4)

= fP
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d

dp
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����
p̂
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1

2

d2

dp2
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' ô` +
d
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�p̂ (7)

where c` = ô` = fP
` (p̂) is the estimate for the observation o` computed from

the estimate parameters p̂. �p̂ is the update of the estimate unknown p̂.

In the full multi-dimensional case this kind of linearisation yields
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o ' ô + DP �p̂ (9)

where c = ô = FP(p̂) are the estimates for the observations o computed from
the estimate parameters p̂. �p̂ are the updates of the estimate unknowns p̂.
The matrix DP holding the Jacobian derivatives of the functions fP

` with
respect to the unknowns p is called the design matrix of the problem.

2 Technical Note

JASMINE will stare at the MW center region. 

JASMINE will

- observe 1e5 stars

- take photo for 80 x 2000 times for each star (Paparazzi !)

- measure N=1e7 params (including satellite attitude)

1010

1010 × 107 matrix

107

Although the design matrix is sparse, it will be tough to solve it quickly. 
>> Need a Parallel Computing LSQR (Least Squares with QR-factorization) method?



・(1) Era of big data 
・(2) Dimensionality reduction 
・(3) Sparsity 
・(4) Bayesian analysis 
・(5) Machine learning 
・(6) Neural network 
・(7) Data challenge

Trends in  
statistical mathematics



ADS papers with “Bayesian” in the abstract. 
ADS papers with “Milky Way” in the abstract. 
ADS papers with “neural net” in the abstract.

Trends in ADS papers
Exponential growth. Time scale ~7 years

Bayesian 
 papers

Unfamiliar with Bayes? See, e.g., 

[1] Data analysis recipes: Fitting a model to data

  https://arxiv.org/abs/1008.4686

[2] Data analysis recipes: Probability calculus for inference

  https://arxiv.org/abs/1205.4446

https://arxiv.org/abs/1008.4686
https://arxiv.org/abs/1205.4446


Bayesian analysis

Only 3 topics (to save time): 

(1) MCMC in high-dimensional space is tricky,  
     especially if the posterior distribution is multi-modal.  
     >> Try nested sampling (Skilling 2004). [e.g., Hikage et al. 2019] 

(2) Bottleneck in MCMC is the computational cost in the likelihood. 
     >> Simplify the likelihood function (e.g., interpolation) [e.g., Nishimichi et al. 2019]  
     >> Reduce the effective data size [e.g., Hattori et al. 2021] 

(3) “Likelihood” is sometimes hard to define (e.g., likelihood of N-body model?)  
     >> Try ABC “Approximate Bayesian Computation”  
           = MCMC-like analysis for the summary statistics



・(1) Era of big data 
・(2) Dimensionality reduction 
・(3) Sparsity 
・(4) Bayesian analysis 
・(5) Machine learning 
・(6) Neural network 
・(7) Data challenge

Trends in  
machine learning



Machine learning

— Andrew Ng

A set of methods that can automatically detect patterns in data,  
and then use the uncovered patterns to predict future data, 

or to perform other kinds of decision making under uncertainty.

Machine learning is the science of getting computers to act  
without being explicitly programmed. 

— Kevin P. Murphy 

Machine learning is the study of computer algorithms that can  
improve automatically through experience and by the use of data.

— Wikipedia



Machine learning

Supervised learning: Based on the “input-output” pairs (test data),  
find the function that maps input to output.

Classification Parameter inference

Spectral analysis 
(Subaru PFS / GA)Transients / Variables /  

Flares / Micro-lensing / SNe

Model generation
Chaotic  
3-body model

… etc.

Photometric redshift
Radio galaxy types

PLASTiCC challenge

Identification
Find strong  
lensing images

3-body problem and deep neural networks 3

Figure 2. Newton and the machine. Image of sir Isaac New-
ton alongside a schematic of a 10-layer deep neural network. In
each layer (apart from the input layer), a node takes the weighted
input from the previous layer’s nodes (plus a bias) and then ap-
plies an activation function before passing data to the next node.
The weights (and bias) are free parameters which are updated
during training.

counters, and computation of converged solutions in these
situations is costly1 (Boekholt et al 2019).

We used a feed-forward ANN consisting of 10 hidden
layers of 128 interconnected nodes (Fig. 2 and Appendix
B). Training was performed using the adaptive moment es-
timation optimization algorithm ADAM (20) with 10000
passes over the data, in which each epoch was separated into
batches of 5000, and setting the rectified linear unit (ReLU)
activation function to max(0, x) (Glorot, Bordes & Bengio,
2011). By entering a time t and the initial location of parti-
cle x2 into the input layer, the ANN returns the locations of
the particles x1 and x2 at time t, thereby approximating the
latent analytical solution to the general three-body problem.

To assess performance of the trained ANN across a
range of time intervals, we partitioned the training and val-
idation datasets into three segments: t . 3.9, t . 7.8 and
t . 10 (which includes all data). For each scenario, we as-
sessed the loss-function (taken as the mean absolute error
MAE) against epoch. Examples are given in Fig. 3. In all
scenarios the loss in the validation set closely follows the
loss in the training set. We also assessed sensitivity to the
choice of activation function, however no appreciable im-
provement was obtained when using either the exponen-
tial rectified (Clevert, Unterthiner & Hochreiter 2011) or
leaky rectified (Maas, Hannun & Ng 2013) linear unit func-
tions. In addition, we assessed the performance of other op-
timization schemes for training the ANN, namely an adap-
tive gradient algorithm (Duchi, Hazan & Singer 2011) and a
stochastic gradient descent method using Nesterov momen-
tum, but these regularly failed to match the performance of
the ADAM optimizer.

The best performing ANN was trained with data from
t . 3.9 (Fig. 3). We give examples of predictions made from
this ANN against converged solutions within the training
set (Fig. 4, left) or the validation set (Fig. 4, right). In each

1 We note that identifying converged solutions for initial condi-
tions near the singular point (0.5, 0) proved challenging. They
result in very close encounters between two particles which could
not be resolved within the predetermined precision. Brutus could
have resolved these trajectories with higher precision, however
this could result in even more lengthy computation time.

Figure 3. Mean Absolute Error (MAE) vs epoch. The
ANN has the same training structure in each time interval. Solids
lines are the loss on the training set and dashed are the loss on the
validation set. T  3.9 corresponds to 1000 labels per simulation,
similarly T  7.8 to 2000 labels and T  10.0 to 2561 labels/time-
points (the entire dataset).The results illustrate a typical occur-
rence in ANN training, there is an initial phase of rapid learning,
e.g. âL’̌s100 epochs, followed by a stage of much slower learning
in which relative prediction gains are smaller with each epoch.

Figure 4. Validation of the trained ANN. Presented are
two examples from the training set (left) and two from the vali-
dation set (right). All examples were randomly chosen from their
datasets. The bullets indicate the initial conditions. The curves
represent the orbits of the three bodies (red, blue and green, the
latter obtained from symmetry). The solution from the trained
network (solid curves) is hardly distinguishable from the con-
verged solutions (dashes, acquired using Brutus (Boekholt &
Portegies Zwart 2015)). The two scenarios presented to the right
were not included in the training dataset.

scenario, the particle trajectories reflect a series of complex
interactions and the trained ANN reproduced these satis-
factorily (MAE  0.1). The ANN also closely matched the
complicated behaviour of the converged solutions in all the
scenarios that were not included in its training. Moreover,
the ANN did this in fixed computational time (t ⇠ 10�3 sec-
onds) which is on average about 105 (and sometimes even
108) times faster than Brutus.

We consider the ability of the ANN to emulate a key

MNRAS 000, 1–6 (2019)



Machine learning

Unsupervised learning: Find the pattern in the data without external information.

Clustering Density estimation

Find open clusters / 
Over-density of galaxies

Anomaly detection

Pair-instability SNe / 
Hypervelocity stars / 
Gravitational lensing

… etc.

Deriving precise CMD / 
Deriving 3D dust map 
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Figure 1. Comparison of HDBSCAN outputs using di↵erent clustering methods and di↵erent cut-o↵ parallaxes. Left: Orion,
sources shown only up to ⇡ =2 mas. Right: Upper Sco and CrA, sources shown only up to ⇡ =5 mas. Both panels are shown in
Galactic coordinates. Di↵erent symbols indicate di↵erent products of di↵erent clustering runs. The structures they trace vary
depending on the cut-o↵ parallax, including the persistence of various structures and their specific membership. Note the edge
e↵ects at l = 0� in the runs shown in the right panel.
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Figure 2. Spatial distribution of sources in the final catalog in Galactic coordinates. Sources in common with Cantat-Gaudin
et al. (2018) are shown in yellow.

16 anderson et al.

Figure 4. The CMD prior, modeled as a Gaussian mixture, inferred by running XD on all
of the data. The left panel shows a sampling of the prior, with the black lines showing the
1� and 2� contours. The right panel shows the 1-� contours of the individual components.
The latter are Gaussian in the transformed magnitude space to make the XD inference
tractable. Thus, they appear as slightly deformed ellipses in color–magnitude space.

dataset and includes the 1� uncertainties on the posterior PDFs. Compared with the

raw data shown in Figure 2, it is clear the precision of the posterior PDFs is greater,

especially for the red giant branch stars.

This change in precision is further illustrated in Figure 7, where we show the

fractional changes in the variance. The left panel shows the natural log of the fractional

change in variance as a function of (J�Ks)C color, with the 1� and 2� contours of the

distribution over plotted. The points are colored by the natural log of their fractional

change in variance (the y axis of the left panel) in both panels to help guide your eye

for the right panel. The regions of CMD space with the greatest improvements are

shown in black, and the regions with the lowest improvements are shown in yellow.

The giants show obvious large improvements, as well as some main sequence stars.

Regions of large improvement are those with the largest photometric and parallax

errors, which are the faintest observed objects. This is a fairly standard result which

we illustrated in the toy model above: the deconvolution of uncertainties is stronger

in noisier regions of the data, leading to narrower features in the upper part of the

CMD, for example. Stars with a color (J �Ks)C ⇠ 0.6 show a decrease in precision

due to the width of the prior there; the more vertical structure in the red giant branch

of the CMD.

Figure 8 shows the cumulative distribution function of the natural log of the frac-

tional change in variance of the parallax posterior pdf relative to the TGAS catalog

(the y-axis of Figure 7). This more directly shows what was alluded to in Figure 5.

For the majority of the Gaia stars, our prior slightly increases the precision of the



Machine learning

Classical methods Neural network
16 anderson et al.

Figure 4. The CMD prior, modeled as a Gaussian mixture, inferred by running XD on all
of the data. The left panel shows a sampling of the prior, with the black lines showing the
1� and 2� contours. The right panel shows the 1-� contours of the individual components.
The latter are Gaussian in the transformed magnitude space to make the XD inference
tractable. Thus, they appear as slightly deformed ellipses in color–magnitude space.

dataset and includes the 1� uncertainties on the posterior PDFs. Compared with the

raw data shown in Figure 2, it is clear the precision of the posterior PDFs is greater,

especially for the red giant branch stars.

This change in precision is further illustrated in Figure 7, where we show the

fractional changes in the variance. The left panel shows the natural log of the fractional

change in variance as a function of (J�Ks)C color, with the 1� and 2� contours of the

distribution over plotted. The points are colored by the natural log of their fractional

change in variance (the y axis of the left panel) in both panels to help guide your eye

for the right panel. The regions of CMD space with the greatest improvements are

shown in black, and the regions with the lowest improvements are shown in yellow.

The giants show obvious large improvements, as well as some main sequence stars.

Regions of large improvement are those with the largest photometric and parallax

errors, which are the faintest observed objects. This is a fairly standard result which

we illustrated in the toy model above: the deconvolution of uncertainties is stronger

in noisier regions of the data, leading to narrower features in the upper part of the

CMD, for example. Stars with a color (J �Ks)C ⇠ 0.6 show a decrease in precision

due to the width of the prior there; the more vertical structure in the red giant branch

of the CMD.

Figure 8 shows the cumulative distribution function of the natural log of the frac-

tional change in variance of the parallax posterior pdf relative to the TGAS catalog

(the y-axis of Figure 7). This more directly shows what was alluded to in Figure 5.

For the majority of the Gaia stars, our prior slightly increases the precision of the

K-means 
Support Vector Machine (SVM) 
Random Forest 
Gaussian Mixture Model (GMM)



Clustering

DBSCAN (Density-based spatial clustering of applications with noise)

One of the most widely used clustering method.

Finding data points within a given radius      .

Circles which encloses less than N_min are ignored.

# of clusters is automatically determined.

Similar to “friend-of-friend” method in N-body simulation.

ϵ
ϵ

N_min = 4. 
Only red circles form the cluster.

One of the fast / successful / easy-to-implement methods:

Figure credit:  https://en.wikipedia.org/wiki/DBSCAN

https://en.wikipedia.org/wiki/DBSCAN
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Figure 1. Comparison of HDBSCAN outputs using di↵erent clustering methods and di↵erent cut-o↵ parallaxes. Left: Orion,
sources shown only up to ⇡ =2 mas. Right: Upper Sco and CrA, sources shown only up to ⇡ =5 mas. Both panels are shown in
Galactic coordinates. Di↵erent symbols indicate di↵erent products of di↵erent clustering runs. The structures they trace vary
depending on the cut-o↵ parallax, including the persistence of various structures and their specific membership. Note the edge
e↵ects at l = 0� in the runs shown in the right panel.
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Figure 2. Spatial distribution of sources in the final catalog in Galactic coordinates. Sources in common with Cantat-Gaudin
et al. (2018) are shown in yellow.

Clustering

Discovering open clusters with Gaia data

Stars in an open cluster have similar position and velocity  
>> DBSCAN can discover open clusters with Gaia’s astrometric data.

>> There are ~2000 open clusters within 1 kpc from the Sun.

(x, v)
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Figure 1. Comparison of HDBSCAN outputs using di↵erent clustering methods and di↵erent cut-o↵ parallaxes. Left: Orion,
sources shown only up to ⇡ =2 mas. Right: Upper Sco and CrA, sources shown only up to ⇡ =5 mas. Both panels are shown in
Galactic coordinates. Di↵erent symbols indicate di↵erent products of di↵erent clustering runs. The structures they trace vary
depending on the cut-o↵ parallax, including the persistence of various structures and their specific membership. Note the edge
e↵ects at l = 0� in the runs shown in the right panel.
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Figure 2. Spatial distribution of sources in the final catalog in Galactic coordinates. Sources in common with Cantat-Gaudin
et al. (2018) are shown in yellow.

Kounkel & Covey (2019)



Density estimation
improving gaia parallax precision 13

Figure 2. The observed CMD: To visualize the full dataset, in the left panel we use the
point estimates of the 2MASS J�Ks color, the J band apparent magnitude, and the TGAS
parallax. The grey lines represent the 1� and 2� contours for the distribution. To give a
sense of the uncertainties, in the right panel we subsample the dataset and include the
1� uncertainties. The uncertainties are dominated by the parallax noise, with many stars
diverging to infinitely far away and therefore very intrinsically bright.

with f($true) being a window function to insure $true is positive and to put $true on

a similar grid for all the posteriors.

4. DATA AND RESULTS

We use stars crossmatched in TGAS and 2MASS. The match was done using a

nearest-neighbor algorithm with a search radius of 4 arcsec2. We also required that

the stars lie within the observing footprint of PS1 to access the Green et al. (2015)

3D dust model. We require that the photometry have real values, and nonzero, real

errors, and remove a small selection of 2MASS stars that have zero color and zero

J-band magnitude. The full data set is visualized in the CMD in Figure 2. The left

panel shows the point estimates of the color and absolute magnitude, using the point

estimate of the parallax from TGAS. The 1� and 2� contours of the distribution are

shown in grey. The right panel shows a subset of the data with the associated error

bar for each star. The uncertainties in the colors are fairly well behaved, but the large

uncertainties in some absolute magnitudes are due to the large uncertainties in the

parallax measurements.

4.1. Dust

To generate the prior and evaluate the likelihood, we need to correct the 2MASS

photometry for dust extinction. With the emergence of 3D dust maps, it is now pos-

2 http://portal.nersc.gov/project/cosmo/temp/dstn/gaia/tgas-matched-2mass.fits.gz
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Figure 4. The CMD prior, modeled as a Gaussian mixture, inferred by running XD on all
of the data. The left panel shows a sampling of the prior, with the black lines showing the
1� and 2� contours. The right panel shows the 1-� contours of the individual components.
The latter are Gaussian in the transformed magnitude space to make the XD inference
tractable. Thus, they appear as slightly deformed ellipses in color–magnitude space.

dataset and includes the 1� uncertainties on the posterior PDFs. Compared with the

raw data shown in Figure 2, it is clear the precision of the posterior PDFs is greater,

especially for the red giant branch stars.

This change in precision is further illustrated in Figure 7, where we show the

fractional changes in the variance. The left panel shows the natural log of the fractional

change in variance as a function of (J�Ks)C color, with the 1� and 2� contours of the

distribution over plotted. The points are colored by the natural log of their fractional

change in variance (the y axis of the left panel) in both panels to help guide your eye

for the right panel. The regions of CMD space with the greatest improvements are

shown in black, and the regions with the lowest improvements are shown in yellow.

The giants show obvious large improvements, as well as some main sequence stars.

Regions of large improvement are those with the largest photometric and parallax

errors, which are the faintest observed objects. This is a fairly standard result which

we illustrated in the toy model above: the deconvolution of uncertainties is stronger

in noisier regions of the data, leading to narrower features in the upper part of the

CMD, for example. Stars with a color (J �Ks)C ⇠ 0.6 show a decrease in precision

due to the width of the prior there; the more vertical structure in the red giant branch

of the CMD.

Figure 8 shows the cumulative distribution function of the natural log of the frac-

tional change in variance of the parallax posterior pdf relative to the TGAS catalog

(the y-axis of Figure 7). This more directly shows what was alluded to in Figure 5.

For the majority of the Gaia stars, our prior slightly increases the precision of the

Color-magnitude diagram (CMD) of nearby stars in Gaia (DR1) data.

Raw data 
… Blurred CMD due to distance error

Reconstructed CMD 
… Gaussian Mixture model  
     after deconvolution of error

Anderson et al. (2017) 
[see also Leistedt et al. 2017]
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Figure 4. The CMD prior, modeled as a Gaussian mixture, inferred by running XD on all
of the data. The left panel shows a sampling of the prior, with the black lines showing the
1� and 2� contours. The right panel shows the 1-� contours of the individual components.
The latter are Gaussian in the transformed magnitude space to make the XD inference
tractable. Thus, they appear as slightly deformed ellipses in color–magnitude space.
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fractional changes in the variance. The left panel shows the natural log of the fractional

change in variance as a function of (J�Ks)C color, with the 1� and 2� contours of the

distribution over plotted. The points are colored by the natural log of their fractional

change in variance (the y axis of the left panel) in both panels to help guide your eye

for the right panel. The regions of CMD space with the greatest improvements are

shown in black, and the regions with the lowest improvements are shown in yellow.

The giants show obvious large improvements, as well as some main sequence stars.

Regions of large improvement are those with the largest photometric and parallax

errors, which are the faintest observed objects. This is a fairly standard result which

we illustrated in the toy model above: the deconvolution of uncertainties is stronger

in noisier regions of the data, leading to narrower features in the upper part of the

CMD, for example. Stars with a color (J �Ks)C ⇠ 0.6 show a decrease in precision

due to the width of the prior there; the more vertical structure in the red giant branch

of the CMD.

Figure 8 shows the cumulative distribution function of the natural log of the frac-

tional change in variance of the parallax posterior pdf relative to the TGAS catalog

(the y-axis of Figure 7). This more directly shows what was alluded to in Figure 5.

For the majority of the Gaia stars, our prior slightly increases the precision of the
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Generative Adversarial Network (GAN*)
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input  
layer

Many parameters (weights) 
allow large flexibility.  
We find the optimal weights by training.

y = f (b + ∑
i

wixi)

weighted sum of  
input nodes

Figure credit: https://www.knime.com/blog/a-friendly-introduction-to-deep-neural-networks

output  
layer

hidden  
layers

f: activation function

hidden layers = g : ℝN → ℝM

If N>M, this can be seen as  
a dimensionality reduction.

ℝMℝN

https://www.knime.com/blog/a-friendly-introduction-to-deep-neural-networks


3-body problem and deep neural networks 3

Figure 2. Newton and the machine. Image of sir Isaac New-
ton alongside a schematic of a 10-layer deep neural network. In
each layer (apart from the input layer), a node takes the weighted
input from the previous layer’s nodes (plus a bias) and then ap-
plies an activation function before passing data to the next node.
The weights (and bias) are free parameters which are updated
during training.

counters, and computation of converged solutions in these
situations is costly1 (Boekholt et al 2019).

We used a feed-forward ANN consisting of 10 hidden
layers of 128 interconnected nodes (Fig. 2 and Appendix
B). Training was performed using the adaptive moment es-
timation optimization algorithm ADAM (20) with 10000
passes over the data, in which each epoch was separated into
batches of 5000, and setting the rectified linear unit (ReLU)
activation function to max(0, x) (Glorot, Bordes & Bengio,
2011). By entering a time t and the initial location of parti-
cle x2 into the input layer, the ANN returns the locations of
the particles x1 and x2 at time t, thereby approximating the
latent analytical solution to the general three-body problem.

To assess performance of the trained ANN across a
range of time intervals, we partitioned the training and val-
idation datasets into three segments: t . 3.9, t . 7.8 and
t . 10 (which includes all data). For each scenario, we as-
sessed the loss-function (taken as the mean absolute error
MAE) against epoch. Examples are given in Fig. 3. In all
scenarios the loss in the validation set closely follows the
loss in the training set. We also assessed sensitivity to the
choice of activation function, however no appreciable im-
provement was obtained when using either the exponen-
tial rectified (Clevert, Unterthiner & Hochreiter 2011) or
leaky rectified (Maas, Hannun & Ng 2013) linear unit func-
tions. In addition, we assessed the performance of other op-
timization schemes for training the ANN, namely an adap-
tive gradient algorithm (Duchi, Hazan & Singer 2011) and a
stochastic gradient descent method using Nesterov momen-
tum, but these regularly failed to match the performance of
the ADAM optimizer.

The best performing ANN was trained with data from
t . 3.9 (Fig. 3). We give examples of predictions made from
this ANN against converged solutions within the training
set (Fig. 4, left) or the validation set (Fig. 4, right). In each

1 We note that identifying converged solutions for initial condi-
tions near the singular point (0.5, 0) proved challenging. They
result in very close encounters between two particles which could
not be resolved within the predetermined precision. Brutus could
have resolved these trajectories with higher precision, however
this could result in even more lengthy computation time.

Figure 3. Mean Absolute Error (MAE) vs epoch. The
ANN has the same training structure in each time interval. Solids
lines are the loss on the training set and dashed are the loss on the
validation set. T  3.9 corresponds to 1000 labels per simulation,
similarly T  7.8 to 2000 labels and T  10.0 to 2561 labels/time-
points (the entire dataset).The results illustrate a typical occur-
rence in ANN training, there is an initial phase of rapid learning,
e.g. âL’̌s100 epochs, followed by a stage of much slower learning
in which relative prediction gains are smaller with each epoch.

Figure 4. Validation of the trained ANN. Presented are
two examples from the training set (left) and two from the vali-
dation set (right). All examples were randomly chosen from their
datasets. The bullets indicate the initial conditions. The curves
represent the orbits of the three bodies (red, blue and green, the
latter obtained from symmetry). The solution from the trained
network (solid curves) is hardly distinguishable from the con-
verged solutions (dashes, acquired using Brutus (Boekholt &
Portegies Zwart 2015)). The two scenarios presented to the right
were not included in the training dataset.

scenario, the particle trajectories reflect a series of complex
interactions and the trained ANN reproduced these satis-
factorily (MAE  0.1). The ANN also closely matched the
complicated behaviour of the converged solutions in all the
scenarios that were not included in its training. Moreover,
the ANN did this in fixed computational time (t ⇠ 10�3 sec-
onds) which is on average about 105 (and sometimes even
108) times faster than Brutus.

We consider the ability of the ANN to emulate a key
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ABSTRACT
Since its formulation by Sir Isaac Newton, the problem of solving the equations of

motion for three bodies under their own gravitational force has remained practically

unsolved. Currently, the solution for a given initialization can only be found by per-

forming laborious iterative calculations that have unpredictable and potentially infinite

computational cost, due to the system’s chaotic nature. We show that an ensemble

of solutions obtained using an arbitrarily precise numerical integrator can be used to

train a deep artificial neural network (ANN) that, over a bounded time interval, pro-

vides accurate solutions at fixed computational cost and up to 100 million times faster

than a state-of-the-art solver. Our results provide evidence that, for computation-

ally challenging regions of phase-space, a trained ANN can replace existing numerical

solvers, enabling fast and scalable simulations of many-body systems to shed light

on outstanding phenomena such as the formation of black-hole binary systems or the

origin of the core collapse in dense star clusters.

Key words: stars: kinematics and dynamics, methods: numerical, statistical

1 INTRODUCTION

Newton’s equations of motion describe the evolution of many
bodies in space under the influence of their own gravitational
force (Newton 1687). The equations have a central role in
many classical problems in Physics. For example, the equa-
tions explain the dynamical evolution of globular star clus-
ters and galactic nuclei, which are thought to be the produc-
tion sites of tight black-hole binaries that ultimately merge
to produce gravitational waves (Portegies Zwart & McMil-
lan 2000). The fate of these systems depends crucially on
the three-body interactions between black-hole binaries and
single black-holes (e.g. see Breen & Heggie 2013A,B; Sams-
ing & D’Orazio 2018), often referred to as close encounters.
These events typically occur over a fixed time interval and,
owing to the tight interactions between the three nearby
bodies, the background influence of the other bodies can be
ignored, i.e. the trajectories of three bodies can be generally
computed in isolation (Portegies Zwart & McMillan 2018).

? Authors contributed equally
† Contact e-mail: phil.breen@ed.ac.uk
‡ Contact e-mail: christopher.foley@mrc-bsu.cam.ac.uk

The focus of the present study is therefore the timely com-
putation of accurate solutions to the three-body problem.

Despite its age and interest from numerous distin-
guished scientists (de Lagrange 1772; Heggie 1975; Hut &
Bahcall 1983; Montgomery 1998; Stone & Leigh 2019), the
problem of solving the equations of motion for three-bodies
remains impenetrable due to the system’s chaotic nature
(Valtonen et al 2016) which typically renders identification
of solutions feasible only through laborious numerical in-
tegration. Analytic solutions exist for several special cases
(de Lagrange 1772) and a solution to the problem for all
time has been proposed (Valtonen et al 2016), but this is
based on an infinite series expansion and has limited use in
practice. Computation of a numerical solution, however, can
require holding an exponentially growing number of decimal
places in memory and using a time-step that approaches
zero (Boekholt et al 2019). Integrators which do not allow
for this often fail spectacularly, meaning that a single nu-
merical solution is unreliable whereas the average of an en-
semble of numerical solutions appear valid in a statistical
sense, a concept referred to as nagh Hoch (Portegies Zwart
& Boekholt 2018). To overcome these issues, the Brutus in-
tegrator was developed (Boekholt & Portegies Zwart 2015),

© 2019 The Authors
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3-body problem in math.

x1(T)
x2(T)
x3(T)
v1(T)
v2(T)
v3(T)

= f

x1(0)
x2(0)
x3(0)
v1(0)
v2(0)
v3(0)

T

Operator of  
“solving equation of motion”

(step 1) Solve 3-body problem  
              with various initial conditions. 
(step 2) Train the NN. 
(step 3) NN solves 3-body problem  
              with any initial condition quickly.

Model generation
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Figure 2. Newton and the machine. Image of sir Isaac New-
ton alongside a schematic of a 10-layer deep neural network. In
each layer (apart from the input layer), a node takes the weighted
input from the previous layer’s nodes (plus a bias) and then ap-
plies an activation function before passing data to the next node.
The weights (and bias) are free parameters which are updated
during training.

counters, and computation of converged solutions in these
situations is costly1 (Boekholt et al 2019).

We used a feed-forward ANN consisting of 10 hidden
layers of 128 interconnected nodes (Fig. 2 and Appendix
B). Training was performed using the adaptive moment es-
timation optimization algorithm ADAM (20) with 10000
passes over the data, in which each epoch was separated into
batches of 5000, and setting the rectified linear unit (ReLU)
activation function to max(0, x) (Glorot, Bordes & Bengio,
2011). By entering a time t and the initial location of parti-
cle x2 into the input layer, the ANN returns the locations of
the particles x1 and x2 at time t, thereby approximating the
latent analytical solution to the general three-body problem.

To assess performance of the trained ANN across a
range of time intervals, we partitioned the training and val-
idation datasets into three segments: t . 3.9, t . 7.8 and
t . 10 (which includes all data). For each scenario, we as-
sessed the loss-function (taken as the mean absolute error
MAE) against epoch. Examples are given in Fig. 3. In all
scenarios the loss in the validation set closely follows the
loss in the training set. We also assessed sensitivity to the
choice of activation function, however no appreciable im-
provement was obtained when using either the exponen-
tial rectified (Clevert, Unterthiner & Hochreiter 2011) or
leaky rectified (Maas, Hannun & Ng 2013) linear unit func-
tions. In addition, we assessed the performance of other op-
timization schemes for training the ANN, namely an adap-
tive gradient algorithm (Duchi, Hazan & Singer 2011) and a
stochastic gradient descent method using Nesterov momen-
tum, but these regularly failed to match the performance of
the ADAM optimizer.

The best performing ANN was trained with data from
t . 3.9 (Fig. 3). We give examples of predictions made from
this ANN against converged solutions within the training
set (Fig. 4, left) or the validation set (Fig. 4, right). In each

1 We note that identifying converged solutions for initial condi-
tions near the singular point (0.5, 0) proved challenging. They
result in very close encounters between two particles which could
not be resolved within the predetermined precision. Brutus could
have resolved these trajectories with higher precision, however
this could result in even more lengthy computation time.

Figure 3. Mean Absolute Error (MAE) vs epoch. The
ANN has the same training structure in each time interval. Solids
lines are the loss on the training set and dashed are the loss on the
validation set. T  3.9 corresponds to 1000 labels per simulation,
similarly T  7.8 to 2000 labels and T  10.0 to 2561 labels/time-
points (the entire dataset).The results illustrate a typical occur-
rence in ANN training, there is an initial phase of rapid learning,
e.g. âL’̌s100 epochs, followed by a stage of much slower learning
in which relative prediction gains are smaller with each epoch.

Figure 4. Validation of the trained ANN. Presented are
two examples from the training set (left) and two from the vali-
dation set (right). All examples were randomly chosen from their
datasets. The bullets indicate the initial conditions. The curves
represent the orbits of the three bodies (red, blue and green, the
latter obtained from symmetry). The solution from the trained
network (solid curves) is hardly distinguishable from the con-
verged solutions (dashes, acquired using Brutus (Boekholt &
Portegies Zwart 2015)). The two scenarios presented to the right
were not included in the training dataset.

scenario, the particle trajectories reflect a series of complex
interactions and the trained ANN reproduced these satis-
factorily (MAE  0.1). The ANN also closely matched the
complicated behaviour of the converged solutions in all the
scenarios that were not included in its training. Moreover,
the ANN did this in fixed computational time (t ⇠ 10�3 sec-
onds) which is on average about 105 (and sometimes even
108) times faster than Brutus.

We consider the ability of the ANN to emulate a key
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Convolution
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The extracted information is translation invariant.
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Figure 8. Examples of HSC images of S-spirals (left) and Z-spirals (right) with the predicted probability of >0.95. They are randomly
selected from spectroscopically-confirmed galaxies at zspec = 0.2 − 0.3.

C.E.R acknowledges Anupreeta More for providing a
tool for visual inspection of images.

REFERENCES

Abraham S., Aniyan A. K., Kembhavi A. K., Philip N. S., Vagh-
mare K., 2018, MNRAS, 477, 894

Aihara H., et al., 2018, PASJ, 70, S4
Aihara H., et al., 2019, PASJ, 71, 114
Alam S., et al., 2015, ApJS, 219, 12
Baba J., Saitoh T. R., Wada K., 2013, ApJ, 763, 46
Bernstein G. M., Jarvis M., 2002, AJ, 123, 583
Bertin E., 2012, in Ballester P., Egret D., Lorente N. P. F., eds,

Astronomical Society of the Pacific Conference Series Vol.
461, Astronomical Data Analysis Software and Systems XXI.
p. 263

Chollet F., et al., 2015, Keras, https://keras.io
Conselice C. J., 2014, ARA&A, 52, 291
Cool R. J., et al., 2013, ApJ, 767, 118
Davis D. R., Hayes W. B., 2014, ApJ, 790, 87
Dieleman S., Willett K. W., Dambre J., 2015, MNRAS, 450, 1441
Dobbs C., Baba J., 2014, Publ. Astron. Soc. Australia, 31, e035
Domı́nguez Sánchez H., Huertas-Company M., Bernardi M., Tuc-

cillo D., Fischer J. L., 2018, MNRAS, 476, 3661
Doroshkevich A. G., 1970, Astrophysics, 6, 320
Drinkwater M. J., et al., 2010, MNRAS, 401, 1429
Fukushima K., 1980, Biological Cybernetics, 36, 193
Garilli B., et al., 2014, A&A, 562, A23
Geehan J. J., Fardal M. A., Babul A., Guhathakurta P., 2006,

MNRAS, 366, 996

Gehrels N., 1986, ApJ, 303, 336
Goldreich P., Lynden-Bell D., 1965, MNRAS, 130, 125
Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley

D., Ozair S., Courville A., Bengio Y., 2014, in Ghahramani
Z., Welling M., Cortes C., Lawrence N. D., Weinberger K. Q.,
eds, , Advances in Neural Information Processing Systems 27.
Curran Associates, Inc., pp 2672–2680

Hart R. E., et al., 2017, MNRAS, 472, 2263
Hayes W. B., Davis D., Silva P., 2017, MNRAS, 466, 3928
He K., Zhang X., Ren S., Sun J., 2016, in 2016 IEEE Confer-

ence on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016. pp 770–778,
doi:10.1109/CVPR.2016.90

Hocking A., Geach J. E., Sun Y., Davey N., 2018, MNRAS,
473, 1108

Hsieh B. C., Yee H. K. C., 2014, ApJ, 792, 102
Huertas-Company M., et al., 2015, ApJS, 221, 8
Huertas-Company M., et al., 2018, ApJ, 858, 114
Iye M., Tadaki K.-i., Fukumoto H., 2019, ApJ, 886, 133
Kingma D. P., Ba J., 2014, arXiv preprint arXiv:1412.6980
Krizhevsky A., Inc G., 2014, Technical report, One weird trick for

parallelizing convolutional neural networks
Krizhevsky A., Sutskever I., Hinton G. E., 2012, in Pereira F.,

Burges C. J. C., Bottou L., Weinberger K. Q., eds, , Ad-
vances in Neural Information Processing Systems 25. Curran
Associates, Inc., pp 1097–1105

Kuminski E., Shamir L., 2016, ApJS, 223, 20
Land K., et al., 2008, MNRAS, 388, 1686
LeCun Y., Bottou L., Bengio Y., Haffner P., 1998,

Proceedings of the IEEE, 86, 2278
Lin C. C., Shu F. H., 1964, ApJ, 140, 646
Lintott C. J., et al., 2008, MNRAS, 389, 1179

MNRAS 000, 1–10 (2020)

0.01
0.00

⋮
0.94
0.02

P(spiral)  
= 0.94



Asteroseismic classification with convnets 4579

Figure 1. Comparisons between an RGB star KIC 11293804 (top), with
an HeB star KIC 5810333 (bottom), both having large frequency spacing
!ν ≃ 3.92 µHz. Panels (a) and (b) are the original power spectra, while (c)
and (d) are folded spectrum image representations. The oscillation modes
are labelled by their degree l, while the frequency of maximum oscillation
power, νmax, is indicated by the dashed vertical line.

labels of all stars in our unclassified set using our trained neural
network.

2.2 Image representation

As our image representation, we define the folded spectrum as the
4!ν-wide power spectrum segment centred at νmax, folded by a
length of !ν (see Figs 1(a) and (c)). The spectra and values for !ν

and νmax were derived from end-of-mission Kepler data using the
SYD pipeline (Huber et al. 2009, Yu et al., in preparation). Because
the neural network requires a fixed input array length, we bin each
folded spectrum into 1000 bins.

A comparison of spectral image representations between RGB
and HeB stars is shown in Figs 1(c) and (d). RGB stars clearly
exhibit acoustic modes that are highly localized (Figs 1(a) and (c)),
while HeB stars show broader mode distributions particularly for
non-radial modes because of the stronger coupling between core
and envelope (Figs 1(b) and (d)) (Dupret et al. 2009; Grosjean et al.
2014). With acoustic resonances less localized, HeB spectral rep-
resentations notably have greater visual complexity as compared to
RGB spectra. Besides the structure of modes, the location of the
l = 0 mode, represented by ϵ, can be a strong indicator in distin-
guishing population classes (Kallinger et al. 2012). However, ϵ is
not the sole feature that is used to recognize population classes from
an image. The lack of a clear boundary separating the two evolu-
tionary states shown by the observed spread in ϵ (Kallinger et al.
2012) and from theoretical studies (Christensen-Dalsgaard et al.
2014) makes ϵ unsuitable as the sole selection criterion. However,
information about ϵ complements features extracted from mixed
modes in the image.

As image pre-processing, we normalize each spectrum by its max
power value. Then, to avoid edge effects, we append the image with
a copy of itself and apply a super-Gaussian (higher-order Gaussian)
weight function as shown in Fig. 2.

2.3 Convolutional neural networks

An artificial neural network is a mathematical representation of a
biological neuron network (Fig. 3a). Mathematical neurons contain
real numbers and connect to other neurons in subsequent levels

Figure 2. (a) Appended and normalized folded spectrum of KIC 10790301
with mode identification. s is the shape parameter or order (=2 for standard
Gaussian), while σ is the standard deviation of the super-Gaussian weight.
The solid vertical line separates the original image from its appended copy.
(b) Resulting image from application of the super-Gaussian weight to the
spectrum in (a).

(network layers) by mathematical operations in order to form a
network capable of computing solutions to complex problems. The
total input from one layer to a neuron in the next network layer is
given by w · x, where x = (x0, x1, x2, x3, ..., xn) is an input vector
with n number of features from the input layer (represented by the
number of neurons in the input layer in Fig. 3a), with x0 = 1. In our
study, x is the power in each frequency bin of the image at the very
first input layer. In subsequent layers, x will become manipulated
representations of the original input image. The weight vector, w =
(w0, w1, w2, ..., wn), links each input to a neuron in the subsequent
layer, with w0 known as the input bias, b, which is analogous to the
intercept in a linear regression.

The total input is linear, however it is passed through a non-
linear activation function (Rosenblatt 1962), f, such that the network
becomes capable of approximating complex non-linear representa-
tions. In this study, we use the rectified linear unit activation function
f(x) = max(0, x) for every neural network layer except the output
layer. This function is suited for feature learning in neural networks
(Nair & Hinton 2010). A common design in neural networks is to
stack multiple layers and have the input pass through consecutive
intermediate or hidden layers to reach the output layer (Fig. 3b).
Such a design is known as a feedforward neural network, because
inputs are computed and fed forward through the network to the
output layer. A simple feedforward neural network has fully con-
nected layers, such that each neuron in a layer is fully connected
to the neurons in the following layer. Each neuron connection for a
fully connected layer is permitted to have distinct weights.

Convolutional neural networks (LeCun & Bengio 1998) are a
variant of feedforward neural networks in which the layer con-
nections are constrained. This constraint comes in the form of
weight sharing, where weights across neurons within a layer are
constrained to only a fixed set of values, known as a filter. The con-
tent of the neurons in a convolutional layer is computed by sliding
this filter across neurons in that layer (Fig. 3c). Hence, the filter
is analogous to a kernel convolution. By using a fixed-length fil-
ter as weights instead of allowing each neuron connection to have
their own distinct weights, features across a local ‘patch’ of data,
for instance, the shape of an l = 1 mixed mode in Fig. 2b, can be
learned to be detected by the network. Detected features across a
layer are computed and then stored in a feature map (Rumelhart,
Hinton & Williams 1988). Feature maps act as the hidden layer
for convolutional layers, with the exception that whereas fully
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Figure 8. Examples of HSC images of S-spirals (left) and Z-spirals (right) with the predicted probability of >0.95. They are randomly
selected from spectroscopically-confirmed galaxies at zspec = 0.2 − 0.3.

C.E.R acknowledges Anupreeta More for providing a
tool for visual inspection of images.
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Fig. 8.— An image showing continuum normalized APOGEE
spectra as a function of metallicity for giant stars of similar tem-
perature. Some of the strongest metal lines seen are identified at
the bottom of the figure.

Fig. 9.— Comparison of a section of the APOGEE spectra for
two stars of the same temperature (approximately 4060 K) with
about a 100⇥ ratio in abundance of iron. The red spectrum is for a
star that has [Fe/H] = -1.8 and log g = 0.158. The black spectrum
is for a star that has [Fe/H] = 0.365 and log g = 1.5.

Examples of the appearance of stellar spectra as ob-
tained by the APOGEE spectrograph are shown in Fig-
ures 6-9. Figure 6 shows stars ranging from spectral type
O to M; the primary APOGEE science targets are of
type G and K, whereas most of the early spectral types
were observed as telluric standards and some M types
are selected by the random sampling of the parent dis-
tribution (§4.2). Across the temperature range of the
primary survey target types (G-K stars), it is still possi-
ble to discern line strength variations, as shown in Figure
7. A primary driver of the APOGEE project is the explo-
ration of chemical abundance variations among its late
type stellar sample; Figure 8 demonstrates the appear-
ance of RGB stars of similar temperature but a 2.2 dex
metallicity spread. To show greater detail and a broader
array of chemical species, Figure 9 highlights the blue
array spectra for two giant stars separated by about 2.2
dex in [Fe/H].

4. SURVEY DESIGN

4.1. Field Selection

4.1.1. Field Selection Principles

The APOGEE field targeting strategy was designed
around several motivations and requirements:

• A desire to sample, with minimal bias, all stellar
populations of the Galaxy, from the bulge, across
the disk, and into the halo.

• The need to probe fields to a variety of magnitude
limits to access stars over a wide range of distance
in all parts of the Galaxy.

• The ability to calibrate e�ciently against stars with
well-established physical properties, such as the
chemical abundances and radial velocities that are
often well established for star cluster members, or
the masses and gravities that can be derived for
asteroseismology targets.

• The need to coordinate with the other SDSS-III
bright time program, MARVELS, which relied on
frequent visits to a relatively limited number of
fields.

In the end, changes in the latter two requirements as well
as the realities of the actual distribution of clear weather
and several other considerations led to the evolution of
the APOGEE target selection over the three year observ-
ing campaign.

4.1.2. Field Selection Evolution

Initial Survey Design: For its expansion into bright
time observing the SDSS-III collaboration planned to
capitalize on the existence of two new fiber-fed instru-
ments that could operate simultaneously from shared
plugplates, thereby doubling the e↵ectiveness of the
Sloan Telescope. Because the MARVELS project re-
quired many visits to each of its target fields, whereas
APOGEE had always planned at least some deep field
probes, the original SDSS-III plan was for 75% of the
bright time to be in co-observing mode, whereas the re-
maining 25% of bright time would be given to APOGEE
to observe fields of no interest to MARVELS and to fill
out its sky coverage. Moreover, because MARVELS tar-
gets were relatively bright, relatively nearby stars, both
surveys could make good use of many visits to fields at
high latitude (in APOGEE’s case, for accumulating sig-
nal on faint, distant halo stars) as well as in the disk
(where APOGEE could both accumulate flux on highly
dust-extinguished stars across the disk as well as cycle
through large numbers of brighter stars).

The baseline for co-observed fields was to accumulate
a total of 24, approximately one hour visits. Under these
overriding restrictions, the initial APOGEE field selec-
tion plan focused on fulfilling the other principles de-
scribed in §4.1.1. The 75% shared survey time was dis-
tributed in a series of 24- and 12-visit fields across the
disk and halo (the latter used for fields that MARVELS
began observing before APOGEE came on line). The
disk plan included, a regular “picket fence” Galactic lon-
gitude distribution of these deep fields, and with multiple
visits at each picket broken up into a series of plate de-
signs that enable stars of di↵erent magnitudes (i.e., mean
distances) to be cycled through for di↵erent numbers of
total visits. The adopted distributions of Galactic lati-
tude and cycling of stars were based on modeling stellar

classification

inference

inference

1D light curve (dimming stars)3

process.
Then using these data, we trained a support vector

machine, visually examined the data judged to be true,
and found 4000 eclipsing binaries. We used thundersvm
(Wen et al. 2018) for the support vector analysis. Us-
ing these training data set, we trained our neural network
model. For each phase, training sets for a negative de-
tection were randomly chosen from the light curves. The
final CNN identified 36, 674 eclipsing binary candidates.

2.3. Identifining and Screening of the Dipper
Candidates

2.3.1. Visual Inspection

We visually inspected all of the 36, 674 eclipsing binary
candidates to classify the types of variation. We classified
them into six types, stellar eclipse, stellar pulsation, vari-
ation by star spots, asteroid passing, systematic noise,
and dippers. The eclipse by a companion or planet is
completely cyclic and has the same shape in every tran-
sits. Although there are many types of the pulsating
stars whose period is about from a day to a week such as
Cepheid, RR Lyrae, Delta Scuti, and Gamma Doradus,
all of them are almost periodic and well modeled as in
the case of eclipse and transit signals. The variation
by the star spots is also periodic, but it exhibits various
shapes in the light curves. While the variation of the star
spots, whose periodic shape can be roughly modeled by
a smooth sine-like curves, is indistinguishable from the
variation of the eclipsing binary, it can be easily distin-
guished from the dippers, whose shape exhibits complex
structure. Also, a large single dip is observed when an as-
teroid crosses over the target star. Although the episodic
dimming event owing to asteroid crossing is similar to
the dipper event, it can be distinguished by examining
pixels outside the aperture; if an asteroid crosses, pixels
outside the aperture will also exhibits large variation. A
systematic noise also induces large variations outside the
aperture. We can distinguish the systematic noise from
the dipper because the common variation pattern is ob-
served in the other targets in the CCD chip. As a result,
we discovered 41 dipper candidates in the TESS first one
year data.

2.3.2. Pixel-level Di↵erence Imaging

The contamination from nearby stars was investigated
using the pixel-level di↵erence imaging (Bryson et al.
2013; Kawahara & Masuda 2019). Figure 2 shows
an example of the pixel-level di↵erence image for TIC
243324939. We take the averages of pixels in and out of
the dip (orange and blue) and compute the di↵erence
image (bottom right panel). The red points indicate
stars, TIC 243324946, 243324939 and 243324936 from
the top to the bottom, whose magnitudes in TESS band
are 15.9, 13.7 and 13.6. We do not plot stars whose mag-
nitudes are more than 16 in the figure. For this example,
though both TIC 243324939 and 243324936 are located
in the center pixel and have similar magnitudes, the dif-
ference image of the dip reveals that pixels around TIC
243324939 show large values; this implies that the source
star that shows dimming event is TIC 243324939.
We also analyze the relative positions of the moment-

weighted centroid of the dipper candidates using
photutils. All of their centroid shifts are consistent
with our identification of the dimming stars.

Figure 2. The pixel-level di↵erence image of TIC 243324939.
Black, blue and orange points in the upper panel are normalized
flux of TIC 243324939. The red points in bottom images indicate
stars, TIC 243324946, 243324939 and 243324936 from the top to
the bottom. White range is an aperture for TIC 243324939 and
blue regions are used to determine background flux. The bottom
right image indicates that the dip occurred in the central four pixels
around TIC 243324939.

Through the above process, we determined 37 dipping
stars from contaminated images. However, we were not
able to associate the dipping signal with any specific star
for four systems by the above process.

2.3.3. SED Analysis

Young stellar objects generally exhibit the infrared ex-
cess owing to the circumstellar structure. We checked
spectral energy distributions (SEDs) of the dipper can-
didates using the data of three bands (GBP , G, GRP )
provided by Gaia DR2, three bands (J, H, Ks) from
2MASS, and four bands (W1, W2, W3, W4) fromWISE.
Each SED was compared with the best-fit black body
model obtained by MCMC using GBP , G, GRP , J, H,
Ks bands. The distance from Gaia is fixed, and the e↵ec-
tive temperature and radius are regarded as free param-
eters. We compared observed WISE fluxes with the ex-
pected energy distributions derived by black body model
to check the infrared excess. Comparing with the result
of Virtual Observatory SED Analyzer (VOSA Bayo et al.
2008), we excluded one target with no clear infrared ex-
cess from our list of dippers because we focus on the
clear examples of the dippers with infrared excess in this
paper.

2.3.4. Other Variables

There are variable stars which shows infrared excess
other than T-Tauri stars. For instance, asymptotic gi-
ant branch (AGB) stars and R Coronae Borealis (RCB)
stars exhibit such excess in their SEDs. Both have in-
frared excess due to circumstellar envelopes and some-
times exhibit quasi-periodic or aperiodic variability. Be-
cause both AGBs and RCBs are giant stars, we used the
stellar radius provided by TESS Input Catalog version 8
(TICv8; Stassun et al. 2019) to exclude such stars from
dipper candidates. We dropped one object with a stellar
radius greater than 3R�. We finally identified 35 dippers
as listed in Table 1. We additionally analyzed Reduced
Unit Weighted Error to distinguish multiple stars from
each other, as summarized in Appendix.

identification
Find a specific  
type of stars
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Figure 1. Comparisons between an RGB star KIC 11293804 (top), with
an HeB star KIC 5810333 (bottom), both having large frequency spacing
!ν ≃ 3.92 µHz. Panels (a) and (b) are the original power spectra, while (c)
and (d) are folded spectrum image representations. The oscillation modes
are labelled by their degree l, while the frequency of maximum oscillation
power, νmax, is indicated by the dashed vertical line.

labels of all stars in our unclassified set using our trained neural
network.

2.2 Image representation

As our image representation, we define the folded spectrum as the
4!ν-wide power spectrum segment centred at νmax, folded by a
length of !ν (see Figs 1(a) and (c)). The spectra and values for !ν

and νmax were derived from end-of-mission Kepler data using the
SYD pipeline (Huber et al. 2009, Yu et al., in preparation). Because
the neural network requires a fixed input array length, we bin each
folded spectrum into 1000 bins.

A comparison of spectral image representations between RGB
and HeB stars is shown in Figs 1(c) and (d). RGB stars clearly
exhibit acoustic modes that are highly localized (Figs 1(a) and (c)),
while HeB stars show broader mode distributions particularly for
non-radial modes because of the stronger coupling between core
and envelope (Figs 1(b) and (d)) (Dupret et al. 2009; Grosjean et al.
2014). With acoustic resonances less localized, HeB spectral rep-
resentations notably have greater visual complexity as compared to
RGB spectra. Besides the structure of modes, the location of the
l = 0 mode, represented by ϵ, can be a strong indicator in distin-
guishing population classes (Kallinger et al. 2012). However, ϵ is
not the sole feature that is used to recognize population classes from
an image. The lack of a clear boundary separating the two evolu-
tionary states shown by the observed spread in ϵ (Kallinger et al.
2012) and from theoretical studies (Christensen-Dalsgaard et al.
2014) makes ϵ unsuitable as the sole selection criterion. However,
information about ϵ complements features extracted from mixed
modes in the image.

As image pre-processing, we normalize each spectrum by its max
power value. Then, to avoid edge effects, we append the image with
a copy of itself and apply a super-Gaussian (higher-order Gaussian)
weight function as shown in Fig. 2.

2.3 Convolutional neural networks

An artificial neural network is a mathematical representation of a
biological neuron network (Fig. 3a). Mathematical neurons contain
real numbers and connect to other neurons in subsequent levels

Figure 2. (a) Appended and normalized folded spectrum of KIC 10790301
with mode identification. s is the shape parameter or order (=2 for standard
Gaussian), while σ is the standard deviation of the super-Gaussian weight.
The solid vertical line separates the original image from its appended copy.
(b) Resulting image from application of the super-Gaussian weight to the
spectrum in (a).

(network layers) by mathematical operations in order to form a
network capable of computing solutions to complex problems. The
total input from one layer to a neuron in the next network layer is
given by w · x, where x = (x0, x1, x2, x3, ..., xn) is an input vector
with n number of features from the input layer (represented by the
number of neurons in the input layer in Fig. 3a), with x0 = 1. In our
study, x is the power in each frequency bin of the image at the very
first input layer. In subsequent layers, x will become manipulated
representations of the original input image. The weight vector, w =
(w0, w1, w2, ..., wn), links each input to a neuron in the subsequent
layer, with w0 known as the input bias, b, which is analogous to the
intercept in a linear regression.

The total input is linear, however it is passed through a non-
linear activation function (Rosenblatt 1962), f, such that the network
becomes capable of approximating complex non-linear representa-
tions. In this study, we use the rectified linear unit activation function
f(x) = max(0, x) for every neural network layer except the output
layer. This function is suited for feature learning in neural networks
(Nair & Hinton 2010). A common design in neural networks is to
stack multiple layers and have the input pass through consecutive
intermediate or hidden layers to reach the output layer (Fig. 3b).
Such a design is known as a feedforward neural network, because
inputs are computed and fed forward through the network to the
output layer. A simple feedforward neural network has fully con-
nected layers, such that each neuron in a layer is fully connected
to the neurons in the following layer. Each neuron connection for a
fully connected layer is permitted to have distinct weights.

Convolutional neural networks (LeCun & Bengio 1998) are a
variant of feedforward neural networks in which the layer con-
nections are constrained. This constraint comes in the form of
weight sharing, where weights across neurons within a layer are
constrained to only a fixed set of values, known as a filter. The con-
tent of the neurons in a convolutional layer is computed by sliding
this filter across neurons in that layer (Fig. 3c). Hence, the filter
is analogous to a kernel convolution. By using a fixed-length fil-
ter as weights instead of allowing each neuron connection to have
their own distinct weights, features across a local ‘patch’ of data,
for instance, the shape of an l = 1 mixed mode in Fig. 2b, can be
learned to be detected by the network. Detected features across a
layer are computed and then stored in a feature map (Rumelhart,
Hinton & Williams 1988). Feature maps act as the hidden layer
for convolutional layers, with the exception that whereas fully
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Figure 8. Examples of HSC images of S-spirals (left) and Z-spirals (right) with the predicted probability of >0.95. They are randomly
selected from spectroscopically-confirmed galaxies at zspec = 0.2 − 0.3.

C.E.R acknowledges Anupreeta More for providing a
tool for visual inspection of images.
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Fig. 8.— An image showing continuum normalized APOGEE
spectra as a function of metallicity for giant stars of similar tem-
perature. Some of the strongest metal lines seen are identified at
the bottom of the figure.

Fig. 9.— Comparison of a section of the APOGEE spectra for
two stars of the same temperature (approximately 4060 K) with
about a 100⇥ ratio in abundance of iron. The red spectrum is for a
star that has [Fe/H] = -1.8 and log g = 0.158. The black spectrum
is for a star that has [Fe/H] = 0.365 and log g = 1.5.

Examples of the appearance of stellar spectra as ob-
tained by the APOGEE spectrograph are shown in Fig-
ures 6-9. Figure 6 shows stars ranging from spectral type
O to M; the primary APOGEE science targets are of
type G and K, whereas most of the early spectral types
were observed as telluric standards and some M types
are selected by the random sampling of the parent dis-
tribution (§4.2). Across the temperature range of the
primary survey target types (G-K stars), it is still possi-
ble to discern line strength variations, as shown in Figure
7. A primary driver of the APOGEE project is the explo-
ration of chemical abundance variations among its late
type stellar sample; Figure 8 demonstrates the appear-
ance of RGB stars of similar temperature but a 2.2 dex
metallicity spread. To show greater detail and a broader
array of chemical species, Figure 9 highlights the blue
array spectra for two giant stars separated by about 2.2
dex in [Fe/H].

4. SURVEY DESIGN

4.1. Field Selection

4.1.1. Field Selection Principles

The APOGEE field targeting strategy was designed
around several motivations and requirements:

• A desire to sample, with minimal bias, all stellar
populations of the Galaxy, from the bulge, across
the disk, and into the halo.

• The need to probe fields to a variety of magnitude
limits to access stars over a wide range of distance
in all parts of the Galaxy.

• The ability to calibrate e�ciently against stars with
well-established physical properties, such as the
chemical abundances and radial velocities that are
often well established for star cluster members, or
the masses and gravities that can be derived for
asteroseismology targets.

• The need to coordinate with the other SDSS-III
bright time program, MARVELS, which relied on
frequent visits to a relatively limited number of
fields.

In the end, changes in the latter two requirements as well
as the realities of the actual distribution of clear weather
and several other considerations led to the evolution of
the APOGEE target selection over the three year observ-
ing campaign.

4.1.2. Field Selection Evolution

Initial Survey Design: For its expansion into bright
time observing the SDSS-III collaboration planned to
capitalize on the existence of two new fiber-fed instru-
ments that could operate simultaneously from shared
plugplates, thereby doubling the e↵ectiveness of the
Sloan Telescope. Because the MARVELS project re-
quired many visits to each of its target fields, whereas
APOGEE had always planned at least some deep field
probes, the original SDSS-III plan was for 75% of the
bright time to be in co-observing mode, whereas the re-
maining 25% of bright time would be given to APOGEE
to observe fields of no interest to MARVELS and to fill
out its sky coverage. Moreover, because MARVELS tar-
gets were relatively bright, relatively nearby stars, both
surveys could make good use of many visits to fields at
high latitude (in APOGEE’s case, for accumulating sig-
nal on faint, distant halo stars) as well as in the disk
(where APOGEE could both accumulate flux on highly
dust-extinguished stars across the disk as well as cycle
through large numbers of brighter stars).

The baseline for co-observed fields was to accumulate
a total of 24, approximately one hour visits. Under these
overriding restrictions, the initial APOGEE field selec-
tion plan focused on fulfilling the other principles de-
scribed in §4.1.1. The 75% shared survey time was dis-
tributed in a series of 24- and 12-visit fields across the
disk and halo (the latter used for fields that MARVELS
began observing before APOGEE came on line). The
disk plan included, a regular “picket fence” Galactic lon-
gitude distribution of these deep fields, and with multiple
visits at each picket broken up into a series of plate de-
signs that enable stars of di↵erent magnitudes (i.e., mean
distances) to be cycled through for di↵erent numbers of
total visits. The adopted distributions of Galactic lati-
tude and cycling of stars were based on modeling stellar

1D light curve (dimming stars)3

process.
Then using these data, we trained a support vector

machine, visually examined the data judged to be true,
and found 4000 eclipsing binaries. We used thundersvm
(Wen et al. 2018) for the support vector analysis. Us-
ing these training data set, we trained our neural network
model. For each phase, training sets for a negative de-
tection were randomly chosen from the light curves. The
final CNN identified 36, 674 eclipsing binary candidates.

2.3. Identifining and Screening of the Dipper
Candidates

2.3.1. Visual Inspection

We visually inspected all of the 36, 674 eclipsing binary
candidates to classify the types of variation. We classified
them into six types, stellar eclipse, stellar pulsation, vari-
ation by star spots, asteroid passing, systematic noise,
and dippers. The eclipse by a companion or planet is
completely cyclic and has the same shape in every tran-
sits. Although there are many types of the pulsating
stars whose period is about from a day to a week such as
Cepheid, RR Lyrae, Delta Scuti, and Gamma Doradus,
all of them are almost periodic and well modeled as in
the case of eclipse and transit signals. The variation
by the star spots is also periodic, but it exhibits various
shapes in the light curves. While the variation of the star
spots, whose periodic shape can be roughly modeled by
a smooth sine-like curves, is indistinguishable from the
variation of the eclipsing binary, it can be easily distin-
guished from the dippers, whose shape exhibits complex
structure. Also, a large single dip is observed when an as-
teroid crosses over the target star. Although the episodic
dimming event owing to asteroid crossing is similar to
the dipper event, it can be distinguished by examining
pixels outside the aperture; if an asteroid crosses, pixels
outside the aperture will also exhibits large variation. A
systematic noise also induces large variations outside the
aperture. We can distinguish the systematic noise from
the dipper because the common variation pattern is ob-
served in the other targets in the CCD chip. As a result,
we discovered 41 dipper candidates in the TESS first one
year data.

2.3.2. Pixel-level Di↵erence Imaging

The contamination from nearby stars was investigated
using the pixel-level di↵erence imaging (Bryson et al.
2013; Kawahara & Masuda 2019). Figure 2 shows
an example of the pixel-level di↵erence image for TIC
243324939. We take the averages of pixels in and out of
the dip (orange and blue) and compute the di↵erence
image (bottom right panel). The red points indicate
stars, TIC 243324946, 243324939 and 243324936 from
the top to the bottom, whose magnitudes in TESS band
are 15.9, 13.7 and 13.6. We do not plot stars whose mag-
nitudes are more than 16 in the figure. For this example,
though both TIC 243324939 and 243324936 are located
in the center pixel and have similar magnitudes, the dif-
ference image of the dip reveals that pixels around TIC
243324939 show large values; this implies that the source
star that shows dimming event is TIC 243324939.
We also analyze the relative positions of the moment-

weighted centroid of the dipper candidates using
photutils. All of their centroid shifts are consistent
with our identification of the dimming stars.

Figure 2. The pixel-level di↵erence image of TIC 243324939.
Black, blue and orange points in the upper panel are normalized
flux of TIC 243324939. The red points in bottom images indicate
stars, TIC 243324946, 243324939 and 243324936 from the top to
the bottom. White range is an aperture for TIC 243324939 and
blue regions are used to determine background flux. The bottom
right image indicates that the dip occurred in the central four pixels
around TIC 243324939.

Through the above process, we determined 37 dipping
stars from contaminated images. However, we were not
able to associate the dipping signal with any specific star
for four systems by the above process.

2.3.3. SED Analysis

Young stellar objects generally exhibit the infrared ex-
cess owing to the circumstellar structure. We checked
spectral energy distributions (SEDs) of the dipper can-
didates using the data of three bands (GBP , G, GRP )
provided by Gaia DR2, three bands (J, H, Ks) from
2MASS, and four bands (W1, W2, W3, W4) fromWISE.
Each SED was compared with the best-fit black body
model obtained by MCMC using GBP , G, GRP , J, H,
Ks bands. The distance from Gaia is fixed, and the e↵ec-
tive temperature and radius are regarded as free param-
eters. We compared observed WISE fluxes with the ex-
pected energy distributions derived by black body model
to check the infrared excess. Comparing with the result
of Virtual Observatory SED Analyzer (VOSA Bayo et al.
2008), we excluded one target with no clear infrared ex-
cess from our list of dippers because we focus on the
clear examples of the dippers with infrared excess in this
paper.

2.3.4. Other Variables

There are variable stars which shows infrared excess
other than T-Tauri stars. For instance, asymptotic gi-
ant branch (AGB) stars and R Coronae Borealis (RCB)
stars exhibit such excess in their SEDs. Both have in-
frared excess due to circumstellar envelopes and some-
times exhibit quasi-periodic or aperiodic variability. Be-
cause both AGBs and RCBs are giant stars, we used the
stellar radius provided by TESS Input Catalog version 8
(TICv8; Stassun et al. 2019) to exclude such stars from
dipper candidates. We dropped one object with a stellar
radius greater than 3R�. We finally identified 35 dippers
as listed in Table 1. We additionally analyzed Reduced
Unit Weighted Error to distinguish multiple stars from
each other, as summarized in Appendix.

Why CNN works for various data? 
— “Translational invariance” 

2D image: Freedom to choose the origin 

1D stellar spectrum: Doppler shift 

1D power spectrum: Δν  

1D light curve: Freedom to choose the origin

CNN is suited for natural science.  
— Reason for  
    “Inflation of ML universe”



Some concerns about neural network

NN is sometimes described as a “black box.”

・Bias in the test data 
・Interpretability of NN — “Explainable AI” (XAI) 
・Uncertainty quantification — Bayesian NN 
・High degrees of freedom — No unique solution.



Bias in the test data

(1) Train a NN to learn the relationship  
between [X/H] and spectra using APOGEE spectra

Example

(2) Train the same NN to learn the relationship  
between [X/H] and spectra using synthetic spectra
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Figure 1. The current StarNet CNN model composed of seven layers. The first layer is solely the input data; followed by two convolutional layers with 4 and
16 filters (in successive order), then a max pooling layer with a window length of four units, followed by three fully connected layers with 256, 128, and 3
nodes (again, in successive order). The final layer is the output layer.

network parameters), the stellar parameters can be predicted for
the rest of the sample. The stellar parameters we consider for this
spectral analysis are the effective temperature (Teff), surface gravity
(log g), and metallicity ([Fe/H]).

In this paper, we present StarNet: a convolutional neural network
(CNN) model applied to the analysis of stellar spectra. We introduce
our machine learning methods in Section 2 and evaluate our model
for a set of synthetic data in Section 3. As an exercise of its effective-
ness, we apply StarNet to the APOGEE survey in Section 4 (DR13
and earlier data releases when appropriate) and compare the stellar
parameters to those from the APOGEE pipeline(s). In Section 5,
we discuss the success of our StarNet results to other stellar analy-
ses and confirm that NNs can significantly increase the robustness,
efficiency, and scientific impact of spectroscopic surveys.

2 MACHINE LEARNING METHODOLOGY

Supervised learning has been shown to be well adapted for continu-
ous variable regression problems. Given a training set in which, for
each input spectrum, there are known stellar parameters, a super-
vised learning model is then capable of approximating a function
that transforms the input spectra to the output values. The learned
function can then ideally be used to predict the output values of a
different data set. The particular form of this function and how it
is learned depends on the NN architecture. Summarized below is
the CNN that we have implemented for the analysis of stellar spec-
tra; we provide more details about deep NNs and the mathematical
operations of our selected architecture in Appendix A.

2.1 The StarNet CNN

An NN can be arranged in layers of artificial neurons: an input layer
(i.e. the input data), a number of hidden layers, and an output layer.
Depending on the architecture of the NN, there may be several
hidden layers, each composed of multiple neurons that weight and
offset the outputs from the previous layer to compute input values
for the following layer. The more hidden layers used in the NN,
the deeper the model is. The combination of these layers act as a
single function, and in the case of StarNet, this function predicts
three stellar parameters.

Inspired from recent studies of deep NNs on stellar spectra (Li,
Pan & Duan 2017; Wang, Guo & Luo 2017), we have focused our
analysis on deep architectures. The CNN selected for StarNet is
shown schematically in Fig. 1. This architecture is composed of a
combination of fully connected layers and one-dimensional (1D)

convolutional layers. Fully connected layers are the classical NN
layers that compute multiple linear combinations of all of the input
values to produce an output vector. In the case of a convolutional
layer, a series of filters are applied, extracting local information from
the previous layer. Throughout the training phase the network learns
the filters that are activated most strongly when detecting specific
features, thus producing a collection of feature maps. Using two
successive convolutional layers, the second of the two convolves
across the previous layer’s feature map, which allows the model to
learn higher order features.

The combination of convolutional layers and fully connected lay-
ers in our StarNet implementation means that the output parameters
are not only affected by individual features in the input spectrum, but
also, combinations of features found in different areas of the spec-
trum are utilized. This technique strengthens the ability of StarNet
to generalize its predictions on spectra with a wide range of signal-
to-noise ratios (S/Ns) across a larger stellar parameter space. More
details of the StarNet model itself are discussed in Section 4.3.

2.2 Training and testing of the model

Before training the model, the reference set is split into a training set
and a cross-validation set. Training is performed through a series
of forward and back propagation iterations, using batches of the
training set. The forward propagation is the model function itself:
at each layer, weights are applied to all of the input values, and at the
output layer, a prediction is computed. These predictions are then
compared to the target values through a loss function. In our StarNet
model, a mean-squared-error (MSE) loss function computes the loss
between predictions and target values and a total loss for all training
examples is minimized.

Initially, the weights of the model are randomly set and there-
fore the predictions will be quite poor. To improve these predic-
tions, the model weights are updated following each batch forward
propagation. Therefore, the weights are adjusted multiple times per
iteration. A minimum was usually reached after 20–25 iterations
(although this could vary greatly depending on the complexity of
the model used). The training of our StarNet model reached con-
vergence in an amount of time that depended on the size of the
training set and the model architecture; for ∼41 000 spectra (close
to 300 million intensity values) and 7.5 million NN parameters, the
training converged in 30 min, using a 16 cores virtual machine.

When the training stage reaches convergence, the weight values
are frozen. The estimated model is evaluated on a test set of spectra
with a wide range of S/Ns. All tests of StarNet are quantified with
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Figure 11. Partial derivatives of the three stellar output parameters from the StarNet model – trained on APOGEE spectra – with respect to input wavelength
bins for a section of the green chip. The partial derivatives of stars from different ranges of the parameter space were compared against each other. Stars with
[Fe/H] > 0.0 were compared to those with [Fe/H] < −1.2 (top). Similarly, stars with Teff> 5000 K were compared to those with Teff< 4300 K (bottom). An
average absolute-valued Jacobian was calculated from 2000 stars in each parameter range. Note the scale differences when comparing the partial derivatives.

Figure 12. Partial derivatives of the three stellar output parameters from the StarNet model – trained on synthetic data – with respect to input wavelength
bins for a section of the green chip. The partial derivatives of stars from different ranges of the parameter space were compared against each other. Stars with
[Fe/H] > 0.0 were compared to those with [Fe/H] < −1.2 (top). Similarly stars with Teff> 5000 K were compared to those with Teff < 4300 K (bottom). An
average absolute-valued Jacobian was calculated from 2000 stars in each parameter range. Note the scale differences when comparing the partial derivatives.
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When designing stellar spectra pipeline, 
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Interpretability of NN

This result might be wrong! 
NN might learn the correlation between observer’s name and chemistry.)

(“Dr. AAA only observes low-[Fe/H] stars,” etc.)

Train NN to learn the relationship  
between chemistry ([Fe/H]) and observation data using 
(1) observation fits file (spectra, date, observer’s name etc..) 
(2) [X/H] from another catalog

… Supervised learning.

A funny example

Result: 
NN learned how to measure [Fe/H] from fits file.

Do not use NN as a black-box.

Modified in the public version



Trade-off: interpretability vs accuracy

M. E. Morocho-Cayamcela et al.: Machine Learning for 5G/B5G Mobile and Wireless Communications

In the matter of wireless communications, it is important
to notice that generating a dataset from computer simulators
is not always the best practice since the ML algorithm will
end up learning the rules with which the simulator was pro-
grammed, and this will not reflect the un-observable features
from the real world (remember that the point is learning
from real data). The scarcity of real datasets available for 5G
mobile and wireless communications is one of the biggest
challenges for researchers and ML practitioners. For many
wireless problems, researchers work closely with domain
experts to formulate the best representation of their data.
This is called feature engineering, and usually takes plenty
of effort and insights. For other cases, the need for manual
feature engineering can be waived by ML automated feature
learning, especially in larger systems. This technique is called
feature learning or representation learning, and it operates by
feeding-in all data and letting the algorithm discover which
features have the most relevance [165]. Certain wireless
systems have the need to update and analyze the datasets
simultaneously. This issue has been tackled by using online
learning to update the predictors in steps [166].
Telecommunication industries that generate an immense

amount of data every day, safeguard this information as one
of their most valuable business assets. Consequently, 5G
research groups, academics, and key industry partners are
defining and developing 5G infrastructure to generate their
own datasets for research [167]–[171]. For example in [172],
a wireless network data resource is open for the research
community. This archive stores wireless trace data frommany
contributing locations to develop ML algorithms and analyze
the data.

B. THE NO FREE LUNCH THEOREM
The No Free Lunch Theorem in ML establishes that if we
average all possible data-generated distributions, every ML
algorithm will have the same performance when inferring
unobserved data [173]. Otherwise stated, no ML algorithm is
universally better than any other. These results hold when we
average over all possible data generating distributions in real
world applications. This means that the goal of ML is not to
seek the absolute best learning algorithm. Instead, we need to
understand what kind of distribution is relevant to our specific
5G/B5G application, and which ML algorithm has the best
performance on that specific data.

C. HYPERPARAMETERS SELECTION
Most ML algorithms have values that are set before the
training begins. These settings are called hyperparameters
because their choice influences the eventual parameters
(i.e., the coefficients or weights) that are updated from the
learning outcomes [174]. For instance, in the case of polyno-
mial regression, the learning rate hyperparameter influences
how fast the model converges in its search of the optimal
weights, and the capacity hyperparameter controls the degree
of the polynomial [175] (as explained in Fig. 3). In the case
of unsupervised learning, we can define the distance function

or density threshold hyperparameters for a certain cluster
analysis [176]. In the case of RL the values of number of
averaged experiment trials, or the environmental character-
istics are considered as the hyperparameters that control the
learning process [177]. In the case of DNN, there are many
other choices such as the number of layers, the number of
neurons in each layer, the batch size to use during training,
etc. If an ML algorithm produces excellent results in one
problem space, it might not be as effective or insightful in
another field (e.g., mobile, and wireless communications).
Researchers that start from a solution that worked in another
context, often find themselves making significant modifica-
tions and improvements before they start getting results [178].
Accordingly, the probability that we might need to handcraft
a custom ML algorithm to tackle a novel 5G problem, is still
high.

D. INTERPRETABILITY VS. ACCURACY TRADE-OFF
After deploying an ML algorithm in a given 5G scheme,
we would like to know why a BS allocates more network
resources to a given user than the other, or why a specific
RAT is selected to connect certain UEs in HetNets. From a
stakeholder standpoint, these complex interactions between
the independent variables are difficult to understand and
might not always make business sense [179]. To explain why
a certain model is best suited in a particular situation and how
the selection of the algorithm is related to the given use case,
a depth understanding of the trade-off between accuracy and
interpretability becomes convenient (Fig. 11).

FIGURE 11. The trade-off between interpretability and accuracy of some
relevant ML models. Highly interpretable algorithms such as classification
rules, or linear regression, are often inaccurate. Very accurate DNNs are a
classic example of black boxes.

Depending on the application, our goal would be to find
the right balance in a model that provides both good accuracy
with high interpretability.
To be able to interpret DNN models it is essential to

understand the functionality of the different hidden lay-
ers, and how nodes are activated. Segmenting a network
by grouping interconnected neurons will provide a simpler
level of abstraction to understand its functionality [180].
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Fig. 10.4. Input image and pixel-wise explanations of the output neuron ‘castle’ ob-
tained with various LRP procedures. Parameters are � = 0.25 std and ⇥ = 0.25.

The reason why Composite LRP delivers a better explanation can be traced
to the qualitative di⇥erences between the various layers of the VGG-16 neural
network:

Upper layers have only approximately 4 000 neurons (i.e. on average 4 neurons
per class), making it likely that the many concepts forming the di⇥erent
classes are entangled. Here, a propagation rule close to the function and its
gradient (e.g. LRP-0) will be insensitive to these entanglements.

Middle layers have a more disentangled representation, however, the stacking
of many layers and the weight sharing in convolutions introduces spurious
variations. LRP-� filters out these spurious variations and retains only the
most salient explanation factors.

Lower layers are similar to middle layers, however, LRP-⇥ is more suitable
here, as this rule tends to spread relevance uniformly to the whole feature
rather than capturing the contribution of every individual pixel. This makes
the explanation more understandable for a human.

Overall, in order to apply LRP successfully on a new task, it is important to
carefully inspect the properties of the neural network layers, and to ask the
human what kind of explanation is most understandable for him.
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Fig. 10.4. Input image and pixel-wise explanations of the output neuron ‘castle’ ob-
tained with various LRP procedures. Parameters are � = 0.25 std and ⇥ = 0.25.

The reason why Composite LRP delivers a better explanation can be traced
to the qualitative di⇥erences between the various layers of the VGG-16 neural
network:

Upper layers have only approximately 4 000 neurons (i.e. on average 4 neurons
per class), making it likely that the many concepts forming the di⇥erent
classes are entangled. Here, a propagation rule close to the function and its
gradient (e.g. LRP-0) will be insensitive to these entanglements.

Middle layers have a more disentangled representation, however, the stacking
of many layers and the weight sharing in convolutions introduces spurious
variations. LRP-� filters out these spurious variations and retains only the
most salient explanation factors.

Lower layers are similar to middle layers, however, LRP-⇥ is more suitable
here, as this rule tends to spread relevance uniformly to the whole feature
rather than capturing the contribution of every individual pixel. This makes
the explanation more understandable for a human.

Overall, in order to apply LRP successfully on a new task, it is important to
carefully inspect the properties of the neural network layers, and to ask the
human what kind of explanation is most understandable for him.

“Castle”“Red part of the image  
was useful for  
classification” Montavon, Binder, Lapuschkin et al. (2019)



・(1) Era of big data 
・(2) Dimensionality reduction 
・(3) Sparsity 
・(4) Bayesian analysis 
・(5) Machine learning 
・(6) Deep learning 
・(7) Data challengeRobustness / reliability  

of new methods



• Photometric LSST Astronomical Time-Series Classification Challenge (https://www.kaggle.com/c/PLAsTiCC-2018) 


• Exoplanet: ARIEL Mission Data Challenges  (https://www.ariel-datachallenge.space/ML/documentation/description)


• Radio astronomy: SKA Data Challenge Competition #1 (https://astronomers.skatelescope.org/ska-science-data-challenge-1/)


• Microlensing Data Challenge ( https://microlensing-source.org/data-challenge/ )


• Galaxy Zoo: galaxy morphology classification challenge ( https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge )


• Mapping dark matter competition ( https://www.kaggle.com/c/mdm/overview )


• Strong lensing data challenge ( https://bolognalensfactory.wordpress.com/home-2/blfkids-lens-finding-challenge/ )


• Gaia challenge (http://astrowiki.ph.surrey.ac.uk/dokuwiki/doku.php)

Data Challenge (Test to validate methods)

https://www.kaggle.com/c/PLAsTiCC-2018
https://www.ariel-datachallenge.space/ML/documentation/description
https://astronomers.skatelescope.org/ska-science-data-challenge-1/


Photometric LSST Astronomical Time-Series Classification Challenge

Kaggle-based competition of classifying mock LSST data  
with generous prize money :)

1st prize:  Kyle Boone                             (Astro PhD student) 
2nd prize: Mike & Silogram                     (Non-astro group) 
3rd prize:  Major Tom, mamas & nyanp (Non-astro group)

Inflation of ML universe.

Is our community open to data scientists,  
given the need for ML talents?

Data challenges for  
- mock ULTIMATE-Subaru data? 
- mock JASMINE data? 
- mock [your favorite project] data? 
… These will galvanize young/enthusiastic  
     members of astro/non-astro community!!



1997), decision lists (Yarowsky, 1994), and a 
variety of Bayesian classifiers (Gale et al., 1993, 
Golding, 1995, Golding and Schabes, 1996).  In 
all of these approaches, the problem is 
formulated as follows:  Given a specific 
confusion set (e.g. {to,two,too}), all occurrences 
of confusion set members in the test set are 
replaced by a marker;  everywhere the system 
sees this marker, it must decide which member 
of the confusion set to choose.   
 Confusion set disambiguation is one of a 
class of natural language problems involving 
disambiguation from a relatively small set of 
alternatives based upon the string context in 
which the ambiguity site appears.  Other such 
problems include word sense disambiguation, 
part of speech tagging and some formulations of 
phrasal chunking.  One advantageous aspect of 
confusion set disambiguation, which allows us 
to study the effects of large data sets on 
performance, is that labeled training data is 
essentially free, since the correct answer is 
surface apparent in any collection of reasonably 
well-edited text.  
 

3 Learning Curve Expe riments 

This work was partially motivated by the desire 
to develop an improved grammar checker.  
Given a fixed amount of time, we considered 
what would be the most effective way to focus 
our efforts in order to attain the greatest 
performance improvement.  Some possibilities 
included modifying standard learning 
algorithms, exploring new learning techniques, 
and using more sophisticated features.  Before 
exploring these somewhat expensive paths, we 
decided to first see what happened if we simply 
trained an existing method with much more 
data.  This led to the exploration of learning 
curves for various machine learning algorithms : 
winnow1, perceptron, naïve Bayes, and a very 
simple memory-based learner.  For the first 
three learners, we used the standard collection of 
features employed for this problem: the set of 
words within a window of the target word, and 
collocations containing words and/or parts of 

                                                                 
1 Thanks to Dan Roth for making both Winnow and 
Perceptron available. 

speech.  The memory-based learner used only 
the word before and word after as features. 
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Figure 1. Learning Curves for Confusion Set 

Disambiguation 
 
 We collected a 1-billion-word training 
corpus from a variety of English texts, including 
news articles, scientific abstracts, government 
transcripts, literature and other varied forms of 
prose.  This training corpus is three orders of 
magnitude greater than the largest training 
corpus previously used for this problem.  We 
used 1 million words of Wall Street Journal text 
as our test set, and no data from the Wall Street 
Journal was used when constructing the training 
corpus. Each learner was trained at several 
cutoff points in the training corpus, i.e. the first 
one million words, the first five million words, 
and so on, until all one billion words were used 
for training. In order to avoid training biases that 
may result from merely concatenating the 
different data sources to form a larger training 
corpus, we constructed each consecutive 
training corpus by probabilistically sampling 
sentences from the different sources weighted 
by the size of each source. 
 In Figure 1, we show learning curves for 
each learner, up to one billion words of training 
data.  Each point in the graph is the average 
performance over ten confusion sets for that size 
training corpus.  Note that the curves appear to 
be log-linear even out to one billion words. 
 Of course for many problems, additional 
training data has a non-zero cost.  However, 

Banko & Brill (2001) “Scaling to Very Very Large Corpora for Natural Language Disambiguation” 

Natural language tasks  
[自然言語処理=機械英文チェックのテスト]

Data size

Score 
(Accuracy)

Concluding remarks:  Era of Big Data
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(A) Poor algorithm + Big data 
vs 

(B) Good algorithm + Small data

Data size

Score 
(Accuracy)

(B) 0.75

(A) 0.93

It’s NOT who has the best algorithms that wins. 
It’s who has the most data.

Concluding remarks:  Era of Big Data
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(A) Poor algorithm + Big data 
vs 

(B) Good algorithm + Small data

(B) 0.75

(A) 0.93

We have the biggest data. 
We need a scope for fostering data scientists,  
because the future of NAOJ is on the shoulders of  
grad students, postdocs, and young researchers.

Concluding remarks:  Era of Big Data
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