Nucleosynthesis: the origin of elements, Milky Way, & distant galaxies

from z=5 to 0

https://www.youtube.com/watch?v=jk5bLrVI8Tw

Metallicity [O/H] = -5 (blue) to -1 (red); > -1 (white)

Chiaki Kobayashi (Univ. of Hertfordshire, UK)

LEVERHULME TRUST _____

Galactic Archaeology

Nomoto, CK, Tominaga 2013 ARAA

→ [Fe/H] and [X/Fe] evolve in a galaxy: fossils that retain the evolution history of the galaxy → Galactic Archaeology
 → With IFU surveys/ALMA/JWST, Extra-galactic Archaeology

Galactic Chemical Evolution (GCE)

(1) One-zone model (instantaneous mixing): Tinsley 80, Timmes+95, Pagel 97, Matteucci 01, Prantzos+93, Ferrini+92 (Molla, Travaglio, Magrini), Chiappini+97, CK+ 00..., Vincenzo+14, Cote+16

$$\frac{d(Zf_g)}{dt} = E_{SW} + E_{SNcc} + E_{SNIa} - Z\psi + Z_{inflow}R_{inflow} - ZR_{outflow}$$

Metal ejection rates

- nucleosynthesis yields
- initial mass function (IMF)
- binaries, SNIa progenitors
- nuclear reaction rates

(2) Stochastic model

Ishimaru+99; Argast+02; Cescutti+08; Wehmeyer+15 Inflow Outflow decreased by star formation

given from hydrodynamics in (3) Chemodynamical simulation

Burkert & Hensler 87, Katz 92, Steinmetz & Müller 94, Mihos & Hernquist 96, CK 04,..., FIRE, EAGLE, Horizon, Illustris

→ inhomogeneous enrichment

Nucleosynthesis Yields

Also, Woosley & Heger; Limongi & Chieffi; NuGrid; PUSH

Nucleosynthesis Yields

Also, Woosley & Heger; Takahashi & Umeda

Thermonuclear (Type Ia) Supernovae

Thermonuclear explosion in a binary with C+O white dwarf Chandrasekhar (Ch) Mass explosion, expected in Single Degenerate (SD) VS

companion star observed! (McCully+14)

in MW, Ch dominant (WD+WD mergers <25%)

AGB star Neutron Star Merger

Yields: Wanajo+14 Rates: Mennekens & Vanbeveren 2014

Electron Capture Supernovae

Yields: Wanajo+13 Mass: Doherty+15

CK, Karakas, Lugaro 2020

Magnetorotational Supernovae Yields: Nishimura+15

ALC: N D

The Origin of Elements

CK, Karakas, Lugaro 2020, ApJ

*Purely theoretical, no empirical equations.

dotted lines: solar values

Article

Nature | Vol 595 | 8 July 2021 | **223**

r-Process elements from magnetorotational

hypernovae

D. Yong^{1,2}, C. Kobayashi^{2,3}, G. S. Da Costa^{1,2}, M. S. Bessell¹, A. Chiti⁴, A. Frebel⁴, K. Lind⁵, A. D. Mackey^{1,2}, T. Nordlander^{1,2}, M. Asplund⁶, A. R. Casey^{2,7}, A. F. Marino⁸, S. J. Murphy^{1,9} & B. P. Schmidt¹

It is necessary to have the r-process associated with core-collapse SNe, such as MRSNe (or collapsars)... Is there any observational evidence?

- 26000 SkyMapper photometric candidates
- 2618 EMP candidates with ANU 2.3m spectra (Da Costa+19)
- 479 stars in SkyMapper DR1.1 (Yong+21b) with Magellan/VLT/Kech
- SMSS J200322.54-114203.3, [Fe/H]= -3.5, 2.3kpc away, Halo orbit

Magneto-rotational Hypernova! Yong, CK, Da Costa+ 21, Nature

Galactic Archaeology surveys of Milky Way and local dwarf galaxies Motions of one billion stars are measured with Gaia. Ages from asteroseismology COROT, Kepler, K2, TESS... Elemental Abundances (from Li to Eu) of one million stars * will be measured with multi-object spectrographs: ◆ SEGUE (Resolution~1800) on SDSS ◆ RAVE (R~7500) on 1.2m UKST ◆ HERMES on AAT (R~28000/50000) ◆ APOGEE (R~20000, IR) on SDSS ♦ GAIA-ESO with VLT (R~20000/40000) WEMOS on Subaru ◆ WEAVE on WHT (R~5000/20000) 4MOST on VISTA (R~5000/18000) PFS on Subaru (R~2300-5000) MSE (R~2000/6500/20000) The origin of sub-structures? The merging history of MW?

Gaia spacecraft http://sci.esa.int/gaia/

MW-type galaxy zoom-in simulation

Gadget3-based code (CK+ 2007)

Aquila Initial Condition (Scannapieco+12), $3x10^{5}M_{\odot}$, 0.5kpc (CK 2015; Haynes & CK 2019; Vincenzo & CK 2020; CK 2022)

[Fe/H]

Elemental abundances across cosmic time

CK 2016, Nature News& Views

The chemical composition of a massive galaxy in the early Universe reveals an extremely short period of star formation. This result could challenge our ideas about the evolution of galaxies and of the Universe itself. SEE LETTER P.248

CHIAKI KOBAYASHI

tars are fossils the of their host gala) their lives, they e vae, producing heavy distributed into the stellar gas. New star from this gas contain were produced from tl tions of stars. By analy patterns of the element sible to determine he kind of supernovae ex On page 248, Kriek et a tal abundances of a ma 11 billion years ago, wh galaxy formed by a sho of star formation and t without producing mor

astronomy 4 Nov 2021

The ramp-up of interstellar medium enrichment z > 4 Fluorine

M. Franco[®]¹[∞], K. E. K. Coppin[®]¹, J. E. Geach[®]¹, C. Kobayashi[®]¹, S. C. Chapman^{2,3}, C. Yang[®]⁴, E. González-Alfonso⁵, J. S. Spilker[®]⁶, A. Cooray[®]⁷ and M. J. Michałowski[®]⁸

- Lensed dusty star-forming galaxy
 NGP-190387 at z = 4.420
- ♦ N(H₂)=2.1±0.4 10²⁴ cm² (from [C I])
 ♦ H₂ + F → H + HF (stable, dominant)

Wolf-Rayet stars!? (or v-process)

1.4 Gyrs after Big Bang, 0.7 Gyrs after re-ionization

Franco et al. 2021, Nature Astronomy

Redshift evolution of CNO ratios Vincenzo & CK 2018a, A&A, 610, 16

C: low-mass AGB, $<4M_{\odot}$ N: massive AGB, $>4M_{\odot}$ O: core-collapse SNe

Currently, N/O (z<2.5), C/O (z>2), but C/N with JWST/NIRSpec!

The N/O-O/H relation

Vincenzo & CK 2018b, MNRAS, 478, 155

- Local relation reflects metallicity radial gradients.
- Global relation is caused by the mass-metallicity relation.
- for 33 star-forming galaxies in cosmological simulations

The N/O-O/H relation

Stellar [α/Fe]-mass relation of ETGs

Not solved yet in any (proper) cosmological simulations...

More [α/Fe] observations

- NIRVANDELS survey on gasphase O/H and stellar Fe/H of 33 star-forming galaxies 2.95 < z < 3.80 (Cullen+21)
- EMPRESS survey, local young low-mass galaxies (Kojima+20, lsobe+21)

#There was a long history until MW stars' [α /Fe] settle down...

Extra-galactic Archaeology

Chemodynamical structures of galaxies, i.e., kinematics and 2D map of gas, stars, <u>chemical abundances</u>, are measured with Integral Field Units (SAURON, CALIFA, MaNGA, SAMI, KMOS, MUSE, Hector, NIRSpec/JWST...)

 Time evolution and scaling relations with larger sample (e.g., SDSS, MOSFIRE, VMOS, FMOS, MOONS, PFS)
 Evolution of mass-metallicity relations, metallicity gradients? Proof of galactic ecosystem?

JWST http://www.jwst.nasa.gov

The topic not mentioned, but absolutely beautiful...

X-ray Intracluster medium (ICM)

X-ray Intracluster medium (ICM)

How to translate line ratios into abundance ratios?

Distant galaxies, DLA, IGM

to witness time evolution

star-forming galaxies,

How to translate line ratios into abundance ratios?

The need for UV spectra of stars

The need for HRMOS: Isotopic ratios!

for accurate/true abundances & in stars

3D/NLTE analyses are essential.

Incomplete list (correct me, I will update the slide)

references

KAGRA	GW	NS/BH merger		-	
Super-K, Hyper-K	MeV v, background	SN		-	
KamLAND	low E v	SN, pp-chain		-	
IceCube-Gen2	high E v	SN		2033	
XRISM	Xray high-res spec	SNR	Mn,Cr etc	2022	
FORCE	high E Xray 1-80keV	AGN	⁴⁴ Ti	mid 2020s	Mori+
HiZ-GUNDAM	Xray 0.5-4keV	high-z GRB		late 2020s	Yonetoku+20
ATHENA	Xray IFU	ICM	C to Ni	2031	ESA
SuperDIOS	Xray	redshifted OVII, OVIII		2030s	Yamada+18
LAPYUTA, 60cm	UV 115-190nm	?	?	2029-31	Tsuchiya+
Subaru-HDS	optical	stars	Li to U	-	
Subaru-PFS	optical MOS (HR/IFU?)	stars, galaxies	Fe, a	2023	
TMT-HROS	optical	stars	Li to U	??	
ULTIMATE-Subaru	0.9-1.8μm (IFU MOS ?)	galaxies		??	Akiyama+
JASMINE	1.1-1.6µm astrometry		dynamics	2022/30s	
GREX-PLUS, 1.2m	10-20µm, 30000A			2030s	Inoue+
ATT10@南極	300µm / 1THz	[OIII],[NII]	?	2032	Kuno+
ALMA	0.3mm-1cm / 31.3-950GHz		CNOF	-	
LST, merged to AtLAST	0.8-4mm / 70-420 GHz	[OIII]@z=7-9; some [CII],[NII]	?	2031?	Kohno+21
EAVN/VERA	10-100mm	AGB mass-loss		-	Imai+20
ngVLA@北米	0.3-20cm / 1.2-116 GHz			2030s	NRAO
SKA	3cm-4m /70MGz-10 GHz		Н	2027-	