NAOJ Future Planning Symposium 2021 Nov. 9-10, 2021 @ NAOJ

Molecular Evolution

Hideko Nomura (Division of Science, NAOJ)

Origin of Materials in Planetary Systems

Origin of Materials in Planetary Systems

Molecular Clouds

Methanol

Water

DENSE CLOUD Protoplanetary Formation of Disks stars and planets /complex species

ACCRETION DIS

Evolved Stars

Supply of heavy elements to ISM

DIFFUSE CLOUD

MASS LOSS

STELLAR SYSTEM **Planetary System**

How much species remain on/in planets?

Bill Saxton, NRAO \bigcirc

Solar System Exploration Amino Acids in Comets & Meteorites

Detection of amino acid, glycine (Elsila et al. 2009)

ESA

Hayabusa 2 JAXA Ryugu

Sample return mission

ROSETTA mission 67P/

67P/Churyumov Gerasimenko

In situ obs. by mass spectrometer (Altwegg et al. 2016) Vairious kind of amino acids

Murchison meteorites

Observed Interstellar Molecules

CH+	HCN	H2CO	HC3N	СНЗОН	HC5N	НСООСНЗ	HC7N
CS	HNC	H2CS	НСООН	CH3CN	СНЗССН	CH3C3N	HC9N
СО	НСО	H2CN	CH2NH	CH3NC	CH3NH2	СНЗСООН	HC11N
CN	OCS	HNCO	CH2CO	СНЗЅН	СНЗСНО	СН2СНСНО	C2H5CN
C2	CH2	HNCS	NH2CN	NH2CHO	CH2CHCN	СН2ОНСНО	СНЗС4Н
СН	С2Н	СЗН	C4H	C5H	С6Н	H2C6	CH3C5N
CO+	C3	<i>с-</i> СЗН	c-C3H2	H2C4	c-C2H4O		СНЗОСНЗ
CF+	CO2	C3N	H2C3	HC3NH+	СН2СНОН		С2Н5ОН
CN-	C2O	C3O	CH2CN	C5N-	С6Н-		CH3CONH2
	C2S	C3S	HCCNC				СНЗСОСНЗ
	HCO+	СНЗ	HNCCC				OHCH2CH2OH
	HOC+	C2H2	CH4				С2Н5ОСНО
	HCS+	HOCO+	H2COH+	amino acido 2			
		HCNH+	C4H-	$\rightarrow anno acius : H2COOH?$			
		C3N-					
1970			19	80	1995	,	2021
~1(0 spe	cies	´~~	50 [—]	~100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	70 species

Solar System Exploration Amino Acids in Comets & Meteorites

Hayabusa 2 JAXA Ryugu

How were these organic compounds formed from molecules in space? Key species: Water & Organics

In situ obs. by mass spectrometer (Altwegg et al. 2016)

Vairious kind of amino acids

Exoplanets: Stellar Type & Age

Spectroscopic observations of host stars are important

e.g., Kepler mission, Subaru SSP: Search for Planets like Earth around Late-M Dwarfs: Precise Radial Velocity Survey with IRD

Global vs. Local Elemental Abundances

Nitrogen, carbon, etc. are depleted on Earth

Local Elemental Abundances

Elemental abundances in solids in the Solar system

How do elemental abundances evolve during star and planet formation? How much diversities can arise?

COMs in Low Metallicity

Chemistry in the Molecular Clouds Gas-phase reactions

Neutral-Neutral Reactions

* Effective on Earth

High activation energies \rightarrow Inefficient at low temp. (~10K)

Cosmic-ray Induced Reactions, Photoreactions UV, X-rays, Cosmic rays

* Radicals are abundant

Ion-Neutral Reactions

* More than half reactions in the chemical network

+ Ion-electron recombination

Chemistry in the Molecular Clouds Gas-phase reactions

Neutral-Neutral Reactions

* Effective on Earth

Chemical properties of molecules ⇔ physical properties of objects (temp. of gas & dust, UV, cosmic rays, X-rays) **Photoreactions** * More than half reactions in the chemical network UV. X-rays, Cosmic ravs electrons + Ion-electron recombination * Radicals are abundant

Complex Molecule Fomration on Grain Surface

cold: < **20K**

warm: 30-50K

Complex molecules are formed on grains More complex molecules on warm grains

To Understand Material Evolution ^{学術変革} Next Generatio

Observation

学術変革 Next Generation Astrochemistry

Microprocess (Laboratory, Theory)

- Gas-phase chemistry (nonthermal chemistry, UV, X-rays, cosmic rays)
- Grain surface chemistry
- Spectroscopy

More COMs in Interstellar Clouds

More COMs in Interstellar Clouds

ALMA, GBT, Yebes 40m, etc. Broad band receiver x laboratory spectroscopy → discover 28 molecules this year!

From Molecular Clouds to Planetary Systems

Molecular Cloud Cores, $\sim 10^{6}$ yr

1987 1998, after Shu et al Hogenheijde

From protoplanetary disk to planets (e.g., Hayashi et al. 1985)

High Res. Obs. of Dust in Disks Subaru SSP/SEEDS (PI: Tamura, M.) ALMA LP/DSHARP (Andrews+ 2018)

Substructures (gasp, rings) exist universally in disks.

nttps://almascience.nao.ac.jp/almadata/lp/DSHARP/

High Res. Obs. of Gas in Disks

https://almascience.eso.org/alma-data/lp/MAPS http://alma-maps.info/

ALMA LP/MAPS (Oberg+ 2021)

Substructures (gasp, rings) are common in gas, too.

Obs. of Gas in Protoplanetary Disks (sub)mm **UV** H₂ Lyman-Werner CO, ¹³CO, C¹⁸O, C¹⁷O, ¹³C¹⁸O, band transitions ¹³C¹⁷O, HCO⁺, H¹³CO⁺, DCO⁺, **Optical** [OI] 6300A $[CI], C_2H, C_2D, C-C_3H_2,$ NIR H_2CO , HCOOH, CH_3OH , H₂ v=1-0 S(1), S(0), HCN, H¹³CN, DCN, HC¹⁵N, $CO \Delta v = 2, \Delta v = 1,$ HNC, CN, $C^{15}N$, N_2H^+ , N_2D^+ , H_2O , OH, HCN, C_2H_2 , CH_4 HC₃N, CH₃CN, CH₂CN, MIR $CS, C^{34}S, {}^{13}CS,$ H₂ v=0-0 S(1), S(2), S(4) H₂S, SO, H₂CS, etc. H_2O , OH, HCN, C_2H_2 , CO_2 , etc. infrared (sub)mm (Spitzer Space Telescope) FIR [OI] 63um, 145um, CO, H₂O, CH⁺, HD, NH₃, etc. AL (Herschel Space Observatory)

Modeling Complex Molecules in PPD

Modeling Complex Molecules in PPD

Modeling Complex Molecules in PPD

Model Spectra of More COMs in Disks

(Walsh et al. 2017)

Broad Band Observations in Disks

(van der Marel+2021, Booth+2021) Further new discovery of molecules are reported.

Abundances of a part of molecules are consistent. More complete model is needed especially for larger molecules

Abundances of a part of molecules are consistent. More complete model is needed especially for larger molecules

Water Snowline in Planet Forming Disks Boundary between Rocky & Gas Giant Planets

Water Snowline in Planet Forming Disks Boundary between Rocky & Gas Giant Planets

N₂H⁺ gas distribution traces CO snowline. (N₂H⁺ is destroyed by CO in gas-phase.) **Observations of water snowline?**

How to Observe Water Snowline?

GREX-PLUS survey

Protoplanetary disk snowline

Keplerian rotation

$$\Delta v = \sqrt{\frac{GM_s}{r}} \frac{\sin i}{i: \text{ inclination}}$$

Water snowline can be located by observing Doppler-shift of Keplerian rotation

Suitable line @ 17.75 μm Typical line width of water from PPDs ~ 30km/s → high-R (R ~ 30,000) is required to locate snowline

(Notsu+ 2016, 2017, Kamp+2021)

(e.g., Spitzer: Boogert+ 2008, Pontpiddan+ 2008, Oberg+ 2008, AKARI: Aikawa+2009, ..)

How to Observe Water Snowline? Water ice absorption in scattered light

SB*r2

[arb. unit

0.1 asec

(Subaru2/TMT science)

TMT with smaller IWA will be able to trace water snowline in scattered light imaging observations

Infrared Spectroscopy for Material Evolution

Infrared Spectroscopy for Material Evolution

Infrared Spectroscopy for Material Evolution

Characterize Exoplanetary Atmospheres

¹²C/¹³C

Habitable Worlds? Effect of stellar flares on habitability?

新学術 A paradigm shift by a new integrated theory of star formation

Can we 'map' exoplanets?

NIR-Orange (SN=100)

(Fujii & Kawahara 2014)

Ice chemistry Observations E Isotope chemistry Astronomy exploration missions

Microprocess (Laboratory, Theory) Physics, chemistry, spectroscopy → TMT/PSI, ... Elemental abundances Molecular snowlines Nonthermal process

Models

Dynamical process Chemical process **Summary** Origin of life? Possible diversity on exoplanets?

- Astronomical observations:
- broad band observations, high dispersion spectroscopy, collaboration with spectroscopists are important
- Collaborations with exploration mission are important
- Models: We need to think both global & local evolution of elemental abundances
- Ice chemistry model for COM formation should be improved, taking into account microprocesses
- Isotopes could be tracers of material evolution
- Evolution of snowlines is one of the keys for local evolution of elemental abundances
- Chemistry with nonthermal processes could be a key
- Molecular evolution model with dynamical process should be improved