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SG: Horizontal Axis 3 (Stars, Planetary System Formation, and Exoplanets)
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Are we alone?

To understand the “place” that we life occupy in the galactic context.

Diversity

Habitability
Life

® How diverse are planets and planetary systems?

® \What fraction of planets or planetary systems resemble our
own?

® \What brings about the diversity of planets and planetary
systems?

® \What is the critical factor in forming our Earth and Solar
System?

® \What are surface environments of rocky exoplanets like?

® How can rocky planets maintain stable, warm climates
habitable to life?

® How can we detect Earth-twins?
® How can we detect life on exoplanets?
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Transit

e Detect apparent declines in stellar brightness
during planetary transits

e Biased toward close-in planets

Radial Velocity

e Detect stellar wobbling

e Biased toward massive planets close to their
host stars

Microlensing

e Detect apparent brightening of the source star

e Biased toward planets orbitingin middle
regions around their host stars

Direct Imaging

e Detect emission orreflection from planets
directly

e Biased toward massive/large or young planets
far from their host stars.
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Ariel Transit, Infra-red, spectroscopy
Characterization of exoplanet atmospheres
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Survey for exoplanets around late M dwarfs
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® Planets are common in the Galaxy.
- Atleast, one planet per star.

® Planets are diverse in orbit and radius.
- No solar-system analog has been

discovered.

® The vast majority are planets larger

than Earth but smaller than Neptune.
- Confirmed for orbital periods <100 days
around FGK dwartfs (or Sun-like stars)
- No such planetis found inthe Solar
System

® Gas giant planets like Jupiter are less
common but not so rare.
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® Most of exoplanets detected so

far are orbiting Sun-like stars.
- S 103 days for transiting planets

- S 104 days for RV planets

® | argely uncharted territories:
- Around relatively late M dwarfs

- Beyond Jupiter’s orbit around Sun-
like stars (FGK dwarts)

- Around 2 2M stars



Ongoing and Near-tuture Projects xor Finding Planets
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Space

TESS (NASA) 2018-
... Earth-analogs orbiting mid M dwarfs

PLATO (ESA) 2026-

... Earth-analogs orbiting Sun-like stars

Roman (NASA) 2026-

... From sub-Earths to gas giants near and beyond
the snowline mainly around M dwarfs

JASMINE (Japan) 2028-
... Earth-analogs orbiting late M dwarfs

LOTUS (Japan) 20xx- ... Solarsystem analogs

Ground (Japan)
IRD @ Subaru ... Super-Earths orbiting late M dwarfs
PRIME @ SALT 2022<... Planets near & beyond snowlines
SAND @ SALT 2022(?)- ... Super-Earths orbiting late M dwarfs
CHARIS @ Subaru _.Young gas giants by directimaging
HIDES-F @ Okayama188cm ... Super-Earths orbiting Sun-like stars
GAOES-RV @ SEIMEI ... pianets orbiting red giants of > 2M




Why M dwarts?
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rlanet rormation: rheory vs. Opvservation

Observed distribution of
planets orbiting FGK dwarfs

taken from exoplanets.org e Close-in gas giants are predicted to be much
less common than observed.

-The accumulation processes of solids and gas
have been relatively well understood.

-The critical issues are to understand how solid
materials are distributed in protoplanetary
disks and how planetary cores migrate before
runaway gas accretion.

=
o

*Predicted abundance of super-Earths/sub-
Neptunes is inconsistent with the observed one.
= [ ack in understanding of the accumulation
and photo-evaporation of their atmospheres.

Planet radius (Earth=1)

eDiversity in bulk composition is predicted.
= Bulk composition is useful in validating
planet formation theories.

Semi-major axis (au)



Observation of Ha emission

400

300

200

100

ADEC (mas)
o

—100

—200

-300

—400

10

from protoplanets

Theoretical prediction
Line profile Hydrodynamics

(Aoyama & lkoma 2019) (Takasao, Aoyama & lkoma 2021)

PDS70b

Energy flux

Haffert et al. (2019)

Zoom-in image Density [g/cm?]
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Our model result

Our model with R=2500
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*The Ha emission comes from the shock-heated gas around

~400 -300 -200 -100 O 100 200 300 400 the accreting peroplanets,

ARA (mas)

Haffert et al. (2019)
LTAO-HRSDI in MUSE@VLT

eDetection of Ha emission is useful in understanding where
gas giant planets are formed in protoplanetary disks.

— Ha imaging with Subaru/SCExAO+VAMPIRES
(Uyama et al. 2020)



opbservation ox bvaporating Atmospneres

ransit light curve for super-Earth GJ 436b Hydrodynamic simulation
- taken with HST of atmospheric escape
: S H I Lyo blue wing Ehrenreich et al. (2015)
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ol . *More samples are needed to better
-4 -2 0 2 4 29.5 30.5 understand the photo-evaporation process

Time (hr) of super-Earths.

The Lya transit depth is > 50%, *Only WSO-UV (and LAPYUTA) can perform
UV observation in 2020s and 2030s, after the

o o (o)
whereas the optical one is only 0.7%. end of HST operation.
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® Observed mass vs. radius
relationships place constraints to
the bulk composition of planets.

® Observationally, planets of the
same mass have different radii,
indicating diversity in bulk
composition.

® Theoretically, planets with
different bulk compositions have
the same mass-radius
relationship. = Degeneracy in
bulk composition
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HD 189733b
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Critical Issue: Linking Atmosphere to Interior of Super-Earths

Stellar UV observation . =1
Photo-chemical £
model & experiment X}
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Cloud/haze GCM simulation
Atmos phere incl. cloud/haze formation
(light gas)

Observation of the atmospheres

Atmosphere ¢ @G N partition ‘ of solar-system objects

(heavy gas)

Geo-dynamic simulation

Magma ocean 3
@RE I\ partition High-pressure experiment

ADb initio simulation

letallic Cc



Aqua-planets

having stable warm climates




Detecting Earth-analogs
through upper atmospheres

*The UV irradiated thermosphere
with small amounts of CO» is hot
and extended.

*The small amount of CO; is
maintained through the carbon
cycle on Earth.
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Search for Biosignatures
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*Need for high resolution
spectroscopic observations
with ELT, TLT, and large space
telescopes.

eSpace missions in 2020s can
provide goodtargets for such
observations.
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® The final goal of exoplanet sciences is to understand the place that we
occupy in the galactic context. Toward it, we have been addressing issues
regarding planetary diversity, formation/evolution, habitability, and life.

® A key issue is to look into the deep atmosphere and interior, and thereby
to understand the planet formation, through multi-wavelength
observations of upper parts of the atmosphere.

® To do so, we need to tackle the issue with a variety of approaches
including astronomy-based and Earth/planetary-science-based ones.

® Japanese researchers have participated in a variety of large projects for
exoplanet observations scheduled in 2020s.

® We will need to have synergetic collaborations among those projects to
maximize the scientific achievements and for Japan to have a strategic
advantage in this field in 2030s and beyond.





