Recent achievements in GW astronomy Status of KAGRA and future prospects

National Astronomical Observatory of Japan Gravitational Wave Science Project Yoichi Aso

400Mpc

$29M_{\odot} + 36M_{\odot} \rightarrow 62M_{\odot}$

Direct detection of gravitational waves

Direct detection of gravitational waves

Black hole binaries exist

Direct detection of gravitational waves

Black hole binaries exist

BH with more than 30 solar mass

400Mpc

$29M_{\odot} + 36M_{\odot} \rightarrow 62M_{\odot}$

Gravitational Wave Luminosity

Visible luminosity of the entire Universe

 $3.6 \times 10^{49} \mathrm{J/s}$

 $1 \times 10^{49} \mathrm{J/s}$

Putative Mass Gaps

$2M_{\odot} \sim 5M_{\odot}$: Largest NS - Smallest BH

Putative Mass Gaps

$2M_{\odot} \sim 5M_{\odot}$: Largest NS - Smallest BH

 $50M_{\odot} \sim 150M_{\odot}$: (Pulsational) Pair-Instability

O1, O2 Compact Binary Detections

Event	m_1/M_{\odot}	m_2/M_{\odot}	\mathcal{M}/M_{\odot}	$\chi_{ m eff}$	M_f/M_{\odot}	a_f	$E_{\rm rad}/(M_{\odot}c^2)$	$\ell_{\rm peak}/({\rm erg}{\rm s}^{-1})$	d_L/Mpc	Z.	$\Delta\Omega/deg^2$
GW150914	$35.6^{+4.7}_{-3.1}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.7}_{-1.5}$	$-0.01\substack{+0.12\\-0.13}$	$63.1_{-3.0}^{+3.4}$	$0.69\substack{+0.05 \\ -0.04}$	$3.1_{-0.4}^{+0.4}$	$3.6^{+0.4}_{-0.4} imes 10^{56}$	440^{+150}_{-170}	$0.09\substack{+0.03 \\ -0.03}$	182
GW151012	$23.2^{+14.9}_{-5.5}$	$13.6\substack{+4.1\\-4.8}$	$15.2^{+2.1}_{-1.2}$	$0.05\substack{+0.31 \\ -0.20}$	$35.6^{+10.8}_{-3.8}$	$0.67\substack{+0.13 \\ -0.11}$	$1.6\substack{+0.6 \\ -0.5}$	$3.2^{+0.8}_{-1.7} imes 10^{56}$	1080^{+550}_{-490}	$0.21\substack{+0.09 \\ -0.09}$	1523
GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.5}$	$8.9\substack{+0.3\\-0.3}$	$0.18\substack{+0.20 \\ -0.12}$	$20.5\substack{+6.4 \\ -1.5}$	$0.74\substack{+0.07 \\ -0.05}$	$1.0\substack{+0.1 \\ -0.2}$	$3.4^{+0.7}_{-1.7} imes 10^{56}$	450^{+180}_{-190}	$0.09\substack{+0.04 \\ -0.04}$	1033
GW170104	$30.8^{+7.3}_{-5.6}$	$20.0\substack{+4.9\\-4.6}$	$21.4^{+2.2}_{-1.8}$	$-0.04\substack{+0.17\\-0.21}$	$48.9\substack{+5.1\\-4.0}$	$0.66\substack{+0.08\\-0.11}$	$2.2\substack{+0.5 \\ -0.5}$	$3.3^{+0.6}_{-1.0} imes 10^{56}$	990_{-430}^{+440}	$0.20\substack{+0.08 \\ -0.08}$	921
GW170608	$11.0^{+5.5}_{-1.7}$	$7.6^{+1.4}_{-2.2}$	$7.9\substack{+0.2 \\ -0.2}$	$0.03\substack{+0.19 \\ -0.07}$	$17.8\substack{+3.4 \\ -0.7}$	$0.69\substack{+0.04 \\ -0.04}$	$0.9\substack{+0.0 \\ -0.1}$	$3.5^{+0.4}_{-1.3} imes 10^{56}$	320^{+120}_{-110}	$0.07\substack{+0.02 \\ -0.02}$	392
GW170729	$50.2^{+16.2}_{-10.2}$	$34.0^{+9.1}_{-10.1}$	$35.4_{-4.8}^{+6.5}$	$0.37\substack{+0.21 \\ -0.25}$	$79.5^{+14.7}_{-10.2}$	$0.81\substack{+0.07 \\ -0.13}$	$4.8^{+1.7}_{-1.7}$	$4.2^{+0.9}_{-1.5} imes 10^{56}$	2840^{+1400}_{-1360}	$0.49\substack{+0.19 \\ -0.21}$	1041
GW170809	$35.0\substack{+8.3\\-5.9}$	$23.8\substack{+5.1\\-5.2}$	$24.9^{+2.1}_{-1.7}$	$0.08\substack{+0.17 \\ -0.17}$	$56.3^{+5.2}_{-3.8}$	$0.70\substack{+0.08 \\ -0.09}$	$2.7\substack{+0.6 \\ -0.6}$	$3.5^{+0.6}_{-0.9} imes 10^{56}$	$1030\substack{+320 \\ -390}$	$0.20\substack{+0.05 \\ -0.07}$	308
GW170814	$30.6^{+5.6}_{-3.0}$	$25.2\substack{+2.8\\-4.0}$	$24.1^{+1.4}_{-1.1}$	$0.07\substack{+0.12 \\ -0.12}$	$53.2^{+3.2}_{-2.4}$	$0.72\substack{+0.07 \\ -0.05}$	$2.7\substack{+0.4 \\ -0.3}$	$3.7^{+0.4}_{-0.5} imes 10^{56}$	600^{+150}_{-220}	$0.12\substack{+0.03 \\ -0.04}$	87
GW170817	$1.46\substack{+0.12 \\ -0.10}$	$1.27\substack{+0.09 \\ -0.09}$	$1.186\substack{+0.001\\-0.001}$	$0.00\substack{+0.02 \\ -0.01}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1 \times 10^{56}$	40^{+7}_{-15}	$0.01\substack{+0.00 \\ -0.00}$	16
GW170818	$35.4_{-4.7}^{+7.5}$	$26.7^{+4.3}_{-5.2}$	$26.5^{+2.1}_{-1.7}$	$-0.09\substack{+0.18\\-0.21}$	$59.4_{-3.8}^{+4.9}$	$0.67\substack{+0.07 \\ -0.08}$	$2.7\substack{+0.5 \\ -0.5}$	$3.4^{+0.5}_{-0.7} imes 10^{56}$	1060^{+420}_{-380}	$0.21\substack{+0.07 \\ -0.07}$	39
GW170823	$39.5^{+11.2}_{-6.7}$	$29.0\substack{+6.7\\-7.8}$	$29.2_{-3.6}^{+4.6}$	$0.09\substack{+0.22 \\ -0.26}$	$65.4\substack{+10.1 \\ -7.4}$	$0.72\substack{+0.09 \\ -0.12}$	$3.3^{+1.0}_{-0.9}$	$3.6^{+0.7}_{-1.1} \times 10^{56}$	1940^{+970}_{-900}	$0.35\substack{+0.15 \\ -0.15}$	1666

THE ASTROPHYSICAL JOURNAL LETTERS, 882:L24 (30pp), 2019 September 10 © 2019. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/2041-8213/ab3800

Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo

B. P. Abbott¹, R. Abbott¹, T. D. Abbott², S. Abraham³, F. Acernese^{4,5}, K. Ackley⁶, C. Adams⁷, R. X. Adhikari¹, V. B. Adya^{8,9}, C. Affeldt^{8,9}, M. Agathos¹⁰, K. Agatsuma¹¹, N. Aggarwal¹², O. D. Aguiar¹³, L. Aiello^{14,15}, A. Ain³, P. Ajith¹⁶, G. Allen¹⁷, A. Allocca^{18,19}, M. A. Aloy²⁰, P. A. Altin²¹, A. Amato²², A. Ananyeva¹, S. B. Anderson¹, W. G. Anderson²³, S. V. Angelova²⁴, S. Antier²⁵, S. Appert¹, K. Arai¹, M. C. Araya¹, J. S. Areeda²⁶, M. Arène²⁷, N. Arnaud^{25,28}, K. G. Arun²⁹, S. Ascenzi^{30,31}, G. Ashton⁶, S. M. Aston⁷, P. Astone³², F. Aubin³³, P. Aufmuth⁹, K. AultONeal³⁴, C. Austin², V. Avendano³⁵, A. Avila-Alvarez²⁶

a: Spin magnitude

 t_2

 m_1

0.2

Beta distribution

a

0.6

0.4

 $\alpha = 1.2, \beta = 2$

 $\alpha = 0.8, \beta = 3$

0.8

1.0

8

6

2

0

0.0

(p)d

Model parameters $\theta = \{\alpha, m_{\text{max}}, m_{\text{min}}, \beta_q, \lambda_{\text{m}}, \mu_{\text{m}}, \sigma_{\text{m}}, \delta_{\text{m}}, \zeta, \sigma_i, \text{E}[a], \text{Var}[a], \lambda\}$ Likelihood of observed events $\mathcal{L}(\{d_i\}|\theta)$ d_i : *i*-th detection Bayesian inference of model parameters $\mathcal{L}(\theta | \{d_i\}) = \frac{\mathcal{L}(\{d_i\} | \theta) \mathcal{L}(\theta)}{\mathcal{L}(\{d_i\})}$

Parametrized Models

Parametrized Models

Spin tilt distribution

GW170817

PRL 119, 161101(20477)

ApJL848:L12 (59pp), 2017

Properties of neutron stars in GW170817

	Low-spin prior ($\chi \le 0.05$)	High-spin prior ($\chi \le 0.89$)
Binary inclination θ_{JN}	146^{+25}_{-27} deg	152^{+21}_{-27} deg
Binary inclination θ_{JN} using EM distance constraint [108]	151^{+15}_{-11} deg	153^{+15}_{-11} deg
Detector-frame chirp mass \mathcal{M}^{det}	$1.1975^{+0.0001}_{-0.0001}~{ m M}_{\odot}$	$1.1976^{+0.0004}_{-0.0002}~{ m M}_{\odot}$
Chirp mass \mathcal{M}	$1.186^{+0.001}_{-0.001} M_{\odot}$	$1.186^{+0.001}_{-0.001} M_{\odot}$
Primary mass m_1	$(1.36, 1.60) M_{\odot}$	$(1.36, 1.89) M_{\odot}$
Secondary mass m_2	$(1.16, 1.36) M_{\odot}$	$(1.00, 1.36) M_{\odot}$
Total mass m	$2.73^{+0.04}_{-0.01}~{ m M}_{\odot}$	$2.77^{+0.22}_{-0.05}~{ m M}_{\odot}$
Mass ratio q	(0.73, 1.00)	(0.53, 1.00)
Effective spin $\chi_{\rm eff}$	$0.00^{+0.02}_{-0.01}$	$0.02^{+0.08}_{-0.02}$
Primary dimensionless spin χ_1	(0.00, 0.04)	(0.00, 0.50)
Secondary dimensionless spin χ_2	(0.00, 0.04)	(0.00, 0.61)
Tidal deformability $\tilde{\Lambda}$ with flat prior	300^{+500}_{-190} (symmetric)/ 300^{+420}_{-230} (HPD)	(0, 630)

Prior for spin

Dimension less spin parameter: $\chi \equiv |c\vec{S}/(Gm^2)|$

High Spin Prior

 $\chi < 0.89$

Low Spin Prior

Mass posterior

Mass Ratio

K. Hotokezaka et. al., Phys. Rev. D 93, 064082 (2016)

K. Hotokezaka et. al., Phys. Rev. D 93, 064082 (2016)

Tidal deformability

High Spin

Low Spin

Multi-Messenger Astronomy

Hubble Constant

NGC 4993

O3 Open Public Alerts

Black hole + Black hole: 25

Neutron star + Neutron star: 6

Black hole + Neutron star: 5

Mass Gap: 2

KAGRA The KAGRA Project

- Over 300 collaborators
- Over 70 institutes from around the world

Beam Splitter Suspension

Pre-Isolator

Intermediate Mass

Mirror

Recoil Mass

Type-A + Cryogenic Suspension

60

14m

Type-A (room temp.)

-iKAGRA(2016)

-bKAGRA Phase 1 (2018)

FPMI on Aug 24, 2019 -(~0.4 kpc)

FPMI Dec, 2019 (~30 kpc)

FPMI at 300 K lim it (~2 Mpc)
O3 target (8-25 Mpc)

GW source localization

Arrival time difference

Triangulation

Plane wave

Improved event localization

Worldwide network of GW detectors

What's next ?

Incremental upgrade: ~ 5 -year term

- Advanced LIGO +
- Advanced Virgo +
- KAGRA+?

Ingredients of incremental upgrades

- Higher Laser Power
- Lower thermal noise
 - Better coating
 - Larger mirror
- Birefringence free mirrors (KAGRA only)
- Frequency dependent squeezing
 - Filter Cavity

Ingredients of incremental upgrades

- Higher Laser Power
- Lower thermal noise
 - Better coating
 - Larger mirror
- Birefringence free mirrors (KAGRA only)
- Frequency dependent squeezing
 - Filter Cavity

Observed rotation of squeezing angle

What's next ?

Incremental upgrade: ~ 5 -year term

- Advanced LIGO +
- Advanced Virgo +
- KAGRA+?

3G detectors: 10 - 20 years

- LIGO Voyager (USA)
- Cosmic Explorer (USA)
- Einstein Telescope (Europe)

Now