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Targets of solar-stellar research NAYL

Common mechanism are
orking in many objects
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The Sun is only a star that can be studied with »
detailed temporal-spatial resolution. R o




Measurement of magnetic fields &,
to understand active atmosphere=~+

DE
(2006-)
Dynamical phenomena responsible
for energy transfer and dissipation.
« Jets, shocks, MHD wave and its

mode conversion,

Total eclipse

: (C) NAOJ/JAXA
Imaging obs of the chromosphere by HINODE

s — Frontier in solar—stellear obs
Ezl(l)”erg 1 Spectro and polari obs to get quantitative
= ABV =~ '%;00 G)'(~ 300@\ information (B, T, v,,) at the site
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Projects In the solar physics group NA'DJ

bservatory of Japan

CLASP/CLASP2
(2015, 2019)

FOXSI-3
(2018)

White Sands Missile Range

Nobeyama Radio Helloqraph
(1992-) and Polarimeter

"ALMA solar (2016-)

Solar Flare Telescope (1 990-) O NAGIIAXA
IR magnetrograph (2010-) Solar C EUVST

NOTE: | picked up scientific results according to my interest.
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Super-strong magnetic fields KA

National Astronomical

in a sunspot

, Anomalously large Zeeman splitting
Ok t d Sak 2018, ApJL
Amoto and =4 l{a,;aéo:g:'nuum  ApJL) Jf — Field strength > 6000 Gauss.
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This kind of observation is possible only with a high-resolution
spectro-polarimeter. 5




Super-strong magnetic fields

In a sunspot

Okamoto and Sakurai (2018, ApJL)

Continuum
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Super-strong fields found in a bright region sandwiched by two
opposite-polarity umbrae, not in a darkest region.

Horizontal flows push the umbra boundary to strengthen the field (?)
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AI‘IOther Supel"-Stl"Ong field sl

Siu-Tapia ell‘ a]/- (2019, A&A) Reported >7kG field near the
B [KG

boundary of “counter-
Evershed” flow.

— Used more sophisticated
technique for deconvolution
and to get height dependence.
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Suggested possibility to create strong st
magnetic fields by dynamical '
compression using a numerical

simulation.

— But it was not successful yet. Y o
2019/12/12 Result by a numerical simulation 4
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Super-strong fields in the

corona

Anfinogentov et al. (2019)

Bright gyro-resonance radio source, suggesting 4 kG at the base of
corona above a flare productive active region.

Extrapolation of coronal B from the surface B, and confirmed the
super-strong field.
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Important to quantify free
energy to drive a solar flare




NASA Sounding Rocket Experiment

CLASP and CLASP2

| (Chromospheric LAyer Spectro-Polarimeter)

Pathfinder mission in solar physics

— Aim to establish means to diagnose the magnetic
field in upper solar atmosphere with UV
spectropolarimetry

s CLASP:Ly a @ 121 nm
= CLASP2: Mg Il h/k 280 nm
International project by Japan, USA, Spain,
France and Norway
— NAOJ led the development of the instrument
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I&T at the clean room of NAOJATC  Successful flight in April 2019

at WSMR, US

See the poster by R. Ishikawa 2|
SR Credit: US Army Phé s e
fOr Inltlal reSUItS White Sands Missile Range




JJ

-3 balloon experiment==

SCIP

(Sunrise Chromospheric
Infrared spectroPolarimeter

NASA APIE Germany, Spain SRS

IS

Slit-jaw
filter

Slit-jaw
Cameraifor. lens -
850nm Slit-jaw’
camera

Blocking Collimator

filter & mirror
Dichroic ‘ !
filter ' Ccamars
r

mirror

Camera for -
770 nm

Linear pol. measured by SCIP

. . oos Quintero Noda et al.
®1m optical telescope (x2 of Hinode-SOT) _, ol (2019, MNRAS)
Flight at >35 km from Sweden to Canada T e[ P
over the Atlantic for a week. Caugdonm |l | iy, ||
— Wide A coverage: 300 nm to 860 nm KI?;}

nm 0.8

— High polarimetric sensitivity without
affected by atmospheric seeing.
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lijima and Yokoyama (2017) Fe 1846 i ||,




SCIP for SUNRISE-3 AT

a i B National Astronomical

Development is progressing at NAOJ/ATC

High precision optics and High precision pol. optics

their mount mechanism
~ ?

(rot. wave plate)

' \
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Key features

 High spatial resolution
— 0.21” (Diff. limit at 850 nm)
- High polarization sensitivity

— 0.03% (10) sensitivity in 10 sec at Ca Il Low CTE optical bench
line to measure ~5 G magnetic fields ==

Camera

« Multi-line spectro-polarimetry
for 3D diagnostics

‘.(‘

Poster by Y. Katsukawa




Energy generation, propagation, ;&

] u - National Astronomical
a n l s s I pa I o n Observatory of Japan

"Remote-sensing obs” “In-situ measurement”
HINODE-SOT HINODE-XRT/EIS Parker Solar Probe
<€ > <€ > <>
«—> ' ik '
=) :» CLAS gt
o i‘ uves - ]
g - 102%_-— SUMER & EIS G T E
> F o . -
g E C Hinode/SOT . 5 ’- 7 R
o R | Corona- L
> | e N ms ¢
% .° 10 C OSpheI’e W Helios & Ulysses —
E £ cBes \ Non-thermal velocity ;
v - s (Hara et al. 2019) 1
E ------------ Undamped linear waves (scalable up & down) |
Phkﬂosphe.re Damped MHD turbulence -
s _ R (r/Ra) — 1 1 "%cranmer et al. (2017, SSRv)
Distance\from ?}16 solar surface
Small-scale turbulence High frequency wave
(Ishikawa et al. 2019, submitted) (Yoshida et al. 2019, ApJ)
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Significant line broadening in the A

photosphere not known so far EEEas

Intensity (T fluctuation) Velocity gradient Line width
: — —rt] Ishikawa et al. (2019, submitted)

Sporadic enhancement of the
spectrum line broadening.
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Excessive line broadening in fading
granules, that cannot be explained
only by the LOS velocity gradient.
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Significant line broadening in the

photosphere not known so far

National Astronomical
Observatory of Japan

In a fading granule

Enhancement of

. turbulence
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Propagation of high-f waves

National Astronomical
Observatory of Japan

Yoshida et al. (2019, ApJ)
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CLASP1 observation (~5 mins) of a spicule
(jet in the chromosphere) near the limb.

PNSDO/AIA 304 CLASP/SP Intensity
'g 35
A
2 %
o
§ G 30
2 < 2°I
€ -
g% s "
% g o =
I 15 E 5
z ¥
8.
T

@ N
00 O
T

-
e

00 150 200 250

0 200 400 600 50 1
Time [sec] (Start from 17:03:41.18) Time [sec) (Start from 17:03:41.18)

2019/12/12

Clear detection of propagating
high frequency waves by Ly-
alpha spectrtoscopic obs.

Energy flux carried by the high
frequency waves was
estimated and was probably a
minor contribution to the
coronal heating.

Trigger of high-f waves
associated with a driver of a
jet(?) We need more statistics.
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onthermal motions in a corona KA

as the source Of SOIar Winds e i

Hara (2019, ApJ)
trend showing no dissipation of Alfven waves

80

60 fiR)=1.0

_ = | e Schematic range from
Nonthermal component V7 in an Z 40 —~—  —4— Hahn & Savin (2013)
emission line width is a measure of - 5 -L
velocity fluctuations associated with  ~ 20 '++ | i
coronal Alfven waves.

A QT .
. : : o_.glhisStudy ... .. .. . ... . -

Emission Line width (FWHM) of Fe XI el e R s 7 e

from HINODE-EIS Observation Radial Distance R/R,,
W= |[Wjie, +4n2Q2ksT;/M; + Vi)

Weak signals on the background by
scattering from other regions are measured

and subtracted during the on-orbit eclipse. ' et e et O
2019/12/12 | f 16



Nonthermal motions in a corona

as the source of solar winds

Estimate energy flux carried
by the Alfven wave.

The damp of the V7 is a
signature of Alfven wave
dissipation in the inner corona.
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Hara (2019, ApJ)
Alfven wave energy flux
| by estimate at the coronal base
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for fast Solar Wind acceleration
0 1.1 1.2 1.3
Rachal Distance R/R

Need confirmation by theoretical/numerical studies as well
as in-situ measurements by Parker Solar Probe.

2019/12/12
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Parker Solar Probe (PSP) NAC)

Observatory of Japan

Parker Solar Probe Mission Trajectory and Current Position

Heliocentric Velocity (km/s): 19.81
Distance from Sun Center (AU): 0.887
Distance from Sun's Surface (Rg): 189.7
Distance from Earth (AU): 1.371

Round-Trip Light Time (hh:mm:ss): 00:22:48
6 Dec 2019 07:00:00 UTC

Parker Solar Probe Distance from Sun

250

Launched in Aug 2018 \

Already experienced three perihelions | |
at ~25Rs.

— HINODE ran coordinated observations to
observe the roots of magnetic fields.

Finally it approaches the Sun as

close as ~10Rs.
2019/12/12 NAOJ symposium 2019
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Initial results just published

National Astronomical
Observatory of Japan

WISPR (coronagraph observation)
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HPLT-ARC

-10* et
\

.20* |

2018-11-01 00:45 UT

15* 30* 45 60* 75t 90* 105*
HPLN-ARC

» Imaging of flux rope and plasmoid
(magnetic islands) ejection.

« Plasmoids generated by the
tearing-mode instability in the
current sheet?

» Dust-free (low scattered light) zone
near the Sun.

2019/12/12

Howard et al. (2019)

FIELDS (direct measurement of E and B)
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Radial magnetic field Br shows quasi-
periodic reversals of sign (switch-back)

“jets’ or "saitchbacks’

PSP spacecraft

Bale et al. (2019)
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“Multi-messenger” observation

Solar Physics is a pioneer of “multi-messenger” astronomy!!

— We have observed energetic particles and disturbances of magnetic fields at
1 AU for major solar flares.

— But it has been difficult to use such obs for understanding of coronal heating
and acceleration.

Synergy with HINODE in coming years

— Combination of remote-sensing obs near the Sun by HINODE and in-situ
measurements of particles and B by PSP.
— Many science cases:
= Relationship of transverse velocity amplitude between near and outer coronae.
= l|dentification of a source of “switch-back” near the Sun.

PSP data are already released for the past two contacts

The multi-messenger approach is expected also for the Solar Orbiter

— To be launched in Feb. 2020. Good for high-latitude targets although SO’s
perihelion is at 60 Rs.
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DKIST is coming soon NAC.

Observatory of Japan

®4m solar telescope in Hawaii
— The largest aperture was 1.6 m so far.

Coordination with HINODE is highly
demanded.

— Cross-calibration of polarimetric obs because
HINODE-SP is a "world-standard” with larger FOV.

— HINODE-EIS coronal spectroscopy is the unique
capability to diagnose corona (until Solar-C

EUVST).
Generation of small-scale turbulent Direct evaluation of “Poynting flux”
velocity and magnetic fields by a polarimetic observation

Intensit Magnetic flux

Longitudinal oscillation

DKIST HINODE

1000 km 21



EUVST: high resolution EUV

spectroscopy

NAC)J

National Astronomical
Observatory of Japan

EUVST

NASA Contributions to the
Extreme UltraViolet
High-Throughput
Spectroscopic f.g-" o,

Telescope
Epsilon Mission

High resolution (0.47)
Wide temperature coverage

Position along the length (arcsec)

Example of an “elemental” jet
Hinode SOT IRIS SJ
CallH (~10°K)

R

Mg (=104 K)  Si IV(~105K)

I
- —- S T~104 K
_ *lCall Hfiltered ' -~ = 8
§¢ % =100 km/s z .
: ‘B .0 sec "/ |~500 km/ .
- I/—/|,5 R
" o £7-100 km/s ;
HSIMGI(~104K) | :
: T~104 K
X
0p)
T~10° K

Lack of high resolution observation
in a corona (>10° K)
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Summary

HINODE is already 13 years old, but is continuously
providing unique data.
— We can still do new science using existing data.

The strategic coordination with ALMA, PSP, SO, and
DKIST is critical to enhance scientific outcomes.

— The coordination is also important to strengthen the
international collaboration for future projects such as EUVST.

The small-scale experimental projects (rockets, balloon
etc.) are important to keep and develop uniqueness of
our group.
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