

Publications of the National Astronomical Observatory of Japan

Volume 8, Numbers 1–4

CONTENTS

The Second Kiso Survey for Ultraviolet-Excess Galaxies. V
...Nagako MIYAUCHI-ISOBE and Hideo MAEHARA 1

Inaccuracies of Trigonometric Functions in Computer Mathematical Libraries
...Takashi ITO and Sadamu KOJIMA 17

01目次8巻(3.3 06.1.23 9:52 AM ページ 1

1. Introduction

We have been continuing the second survey of ultravio-
let (UV)-excess galaxies with the Kiso 105-cm Schmidt tele-
scope. This is a continuation and an extension of the original
survey for Kiso UV-excess galaxies (KUGs) carried out by
Takase and Miyauchi-Isobe (1984-1993a). Its comprehen-
sive catalogue was published by Takase and Miyauchi-Isobe
(1993b), where 8,104 KUGs were included in the covered
sky area of some 5,100 square degrees. (The data of the area
A0432 must be replaced to Myauchi-Isobe et al. 1997.) A
variety of faint UV-excess galaxies were catalogued down to
V～17 mag in the first series of the survey.

The main area of the KUG survey is the belt spread
along l=180°from the north galactic pole toward the south.
The isolated areas are those of specially selected ones relat-
ing to voids, clusters, or fields, which were studied in the
previous papers (cf. Fig.II-2 of Miyauchi-Isobe and Maehara
2000). Accordingly, the sky areas treated in the second sur-
vey mainly consist of remaining fields of the main belt and

isolated ones with plates of good quality. The main sky
areas catalogued in this paper are 10 Schmidt fields along
the galactic longitude of l～180°in the south hemisphere.

In the course of follow-up observations of KUGs (e.g.,
Maehara et al. 1987, Comte et al. 1994, Tomita et al. 1997),
it is clarified that the majority of them are spiral or irregular
galaxies with intense star formation in their nuclei, bars,
disks, or outer regions. These samples give us clues to the
understanding of triggering mechanism of star formation,
and of the evolution of some types of galaxies. In addition,
Seyferts, LINERs, and active galaxies with some peculiari-
ties are minor constituents of the catalogue. Thus it is a
fainter extension of the catalogue of Markarian galaxies
(MKGs). In these circumstances, it is worth continuing and
supplementing the first KUG survey, and we have been mak-
ing the second survey (Miyauchi-Isobe and Maehara 1998,
2000, 2002, 2003).

The method of the second survey is, in principle, the
same as that of the first one; U (ultraviolet) and R (red) dou-
ble exposure 103a-E plates are used for the detection of

Publ. Natl. Astron. Obs. Japan Vol. 8. 1–15 (2005)

The Second Kiso Survey for Ultraviolet-Excess Galaxies. V

Nagako MIYAUCHI-ISOBE and Hideo MAEHARA

(Received March 25, 2005)

Abstract

The catalogue list and the identification chart of ultraviolet (UV)-excess galaxies, which have been detected
on two or three-color Kiso Schmidt plates, are presented for 10 Schmidt fields. Catalogued are 127 objects, down
to the photographic magnitude ～ 17.5 in the sky area of some 300 square degrees. The number of KUGs detect-
ed in this paper is much smaller than that of the high galactic area, and the total number of KUGs newly detected
in the second survey reaches up to 1,954.

Key words: Ultraviolet-excess galaxies, KUGs, Survey with Schmidt telescope.

Table V-1. The Data of Plates.

Area Plate Observation Plate Center No. of
No. No. Date R.A. (1950.0) Dec. l b KUGs

h m

Total 127(2)*

A0465 KL6472 1990 Nov. 13 3 20 +30 158 –22 4

 A0755 KL2383 1979 Oct. 30 4 00 +10 181 –31 1

 A0827 KL2574 1980 Jan. 22 4 00 + 5 185 –34 3

 A1109 KL3441 1981 Nov. 21 2 00 –15 180 –69 28

 A1177 KL1918 1978 Dec. 22 0 40 –20 107 –82 38

 A1178 KL1913 1978 Dec. 21 1 00 –20 142 –82 12(1)

 A1179 KL2939 1980 Nov. 3 1 20 –20 168 –80 20

 A1180 KL4168 1983 Oct. 29 1 40 –20 183 –76 5

 A1250 KL4137 1983 Sep. 12 1 00 –25 169 –87 3

 A1251 KL2498 1979 Dec. 16 1 20 –25 196 –83 13(1)

* Parenthesized is the number of duplicated objects which are doubly listed in the present survey.

本文8巻-1 06.1.12 9:51 AM ページ 1

KUGs. Exposure times being so set that the U and R images
of early A-type stars are equally bright, the object whose U
image is brighter than the R image is regarded to be bluer
than early A-type stars. Typically, a field has several to ten
those stars for the comparison. We pick up those galaxies
as Kiso UV-excess galaxies (abbreviated as KUGs) with the
visual inspection of the plate, and list their parameters in this
paper. In some cases, a highly blue portion (e.g., knot,
clump, shell, or ring) exists on the less blue main galaxy
body. In this circumstance, the degree of UV-excess of a
galaxy is estimated on the comparison of the integrated U
and R brightness of the whole galaxy image on the plate, and
the redder galaxy is discarded from the list.

The position, the brightness, and the morphological
type of a KUG are estimated by referring to the object identi-
fied in the Palomar Sky Survey Print (PSS). Its degree of
UV-excess is also confirmed by the comparison of the B
(103aO) and R (103aE) print of the PSS. As a result, 127
KUGs are detected in the sky area of some 300 square
degrees. The data of the sky area, photographic plate, and
the number of detected objects in this work are listed in
Table V-1.

2. Survey Catalogue

The list of detected objects and their identification
charts are respectively given in Table V-2 and Figure V-1.

The evaluation procedures of detected objects, which
are presented in Table V-2, are the same as those of the first
survey.

Column 1: The running number according to the right
ascension.

Column 2: The KUG-name composed of the values of
right ascension and declination.

Column 3 and 4: The right ascension and declination
for the epoch 1950.0.

Column 5: The morphological type adopted in this
work is different from the traditional morphological classifi-
cation, because there exist conspicuous blue (UV-excess)
portions on these KUGs. Thus we adopt another classifica-
tion scheme, which pays attention to the blue structures on
the galaxy images (Takase et al. 1983); it consists of seven
types as follows;

The type is assigned through visual inspections of both
Kiso plates and blue and red PSS prints. A colon (:) is
attached to the type, when the type is not certainly assigned,
and a question mark (?) means unclassifiable.

Column 6: The image size (along the major and the
minor axis) in minutes of arc on the blue PSS print.

Column 7: The apparent (blue) magnitude, which is
eye-estimated on the PSS blue print referring to the known
magnitude of the catalogued objects. It is usually calibrated

using Zwicky catalogues, and extended towards fainter
objects.

Column 8: The degree of UV-excess estimated from
Kiso plates. H, M, and L denote high, medium, and low
degree, respectively. Further explanation on the UV-excess
is referred to Takase et al. (1983).

Column 9: The names given in previous catalogues.
The abbreviated notations used in this paper have the follow-
ing correspondence to those adopted in MOL (abbreviation
of the catalogue list compiled by Dixon and Sonneborn
1980).

A: ARP, H: HARO, I:IC, M: MCG, MK: MKG, N:
RNGC, U: UGC, V: VV, Z: ZWG, nZ: nZW (n=1,2,....8), K:
KUG (the previous KUG survey), and KE: KUG errata
(Miyauchi-Isobe et al. 1997).

According to the identification with the other cata-
logues, many objects have been listed before. Especially, a
number of KUGs appear in the Zwicky catalogues, and
bright KUGs are identified as Markarian galaxies. There are
morphologically peculiar KUGs, which appear in the MCG
catalogue.

In all, the number of KUGs detected in this survey
reaches up to 1,954, and the total number of KUGs in the
first and the second surveys exceeds 10,000.

3. Discussion

The UV-excess is one of the major indices to detect
active galaxies with conventional ground-based telescope. A
number of Schmidt surveys have been carried out in the sim-
ilar methods to us whose representative is the comprehensive
work by Markarian et al. (1989). Even recently, a number of
investigators have carried out new deep surveys for those
objects applying the modern digitization machines and tech-
niques treating large Schmidt plates; the Montreal survey
(Coziol et al. 1993, 1994), the Madrid survey (Zamorano et
al. 1994, Gallego et al. 1995), the Hamburg survey (Hopp et
al. 1995, Popescu et al. 1996), and the Marseille survey
(Surace and Comte 1998). According to them, major con-
stituents of their surveys are galaxies with intense star for-
mation (starburst) activity and/or non-thermal Seyfert-like
nuclear phenomena.

The image quality and the limiting magnitude of Kiso
Schmidt plates are generally less homogeneous due to the
average observation condition of the site. Thus we select the
plates of relatively good quality, and apply the visual (non-
automatic) inspection method in order to cancel the inhomo-
geneity originated from the standardized inspection tech-
nique. Furthermore, we scrutinize detected objects by refer-
ring Palomar Sky Survey (PSS) prints, preventing the degra-
dation of our survey. Since we usually pick up such objects
that possess distinct blue knots, clumps, or components, we
possibly miss UV-excess objects with smooth light distribu-
tion or uncertain morphological types. Therefore, we try to
pick up carefully such objects according to the total color as
well.

During our scrutinizing individual objects to estimate
the brightness, morphological type, and degree of UV-
excess, we pick up some KUGs, which exhibit other kinds of
peculiar morphologies. The peculiarities are noticed in the

Nagako Miyauchi-Isobe, and Hideo Maehara2

Ic : Irregular with blue clumps
Ig : Irregular with a giant clump
Pi : Pair of interacting components
Pd : Pair of detached components
Sk : Spiral with blue knots on the disk
Sp : Spiral with blue bar and/or nucleus
C : Compact.

本文8巻-1 06.1.12 9:51 AM ページ 2

supplements to tableV-2 “notes on individual galaxies”, e.g.,
galaxies with blue clumps and knots, disk galaxies with thick
and patchy arms, and sagittate, eye-, or boomerang-shaped
objects. We find blue ring-like structures surrounding the
nuclei of KUG0354+083 and 0402+042.

KUGs tend to be situated in pairs, groups and/or clus-
ters of galaxies, rather than isolated galaxies of the same
morphological type (e.g., Takase 1980). Actually, we have
detected a conspicuous concentration of KUGs in the second
survey (Miyauchi-Isobe and Maehara 1998). In this paper,
we notice an interesting KUG concentration in the area
A1177, as illustrated in figure 2. It is identified as
SCG0045-2043 in an automated survey of southern compact
groups of galaxies by Iovino (2002), which possess five faint
galaxies nearly on line. Among the components, four galax-
ies are detected as KUGs with low, or medium degree of
UV-excess. They show some peculiarities of their morphol-
ogy, such as thick, or patchy arms. These groups of galaxies
as well as Hickson compact groups of galaxies (HCGs) are
excellent samples for the study of the influence of interaction
on KUGs. Thus it is worth observing in more detail these
objects to clarify the activity and the star formation of galax-
ies.

The authors are very much grateful to Prof. B. Takase
on the continuation of the KUG survey. We are also grateful
to Dr. A. Tomita of Wakayama University who gives us var-
ious suggestions on the properties of KUGs. We are grateful
to the staff of Kiso Observatory for their help in observation,
measurement and data processing, especially to Mr. T.
Soyano for his sincere help in measurement and data pro-
cessing.

References

Comte, G., Augarde, R., Chalabaev, A., Kunth, D., and
Maehara, H. 1994, “Spectrographic Study of a Large
Sample of Kiso Ultraviolet-Excess Galaxies. II.
Discussion”, Astron. Astrophys., 285, 1-18.

Coziol, R., Demers, S., Pena, M., Torres-Peimbert, S.,
Fontaine, G.,Wesemael, F., Lamontagne, R. 1993,
“MBG02223-1922: a Newly Identified Luminous
Seyfert Galaxies”, Mon. Not. Royal Astron. Soc.,
261,170-174.

Coziol, R., Demers, S., Pena, M., Barneoud, R. 1994, “The
Montreal Blue Galaxy Survey: II. Second List of UV-
bright Candidates”, Astron. J., 108, 405-413.

de Vaucouleurs, G., de Vaucouleurs, A., Corwin, Jr., H. G.,
Buta, R. J.,Paturel, G., and Fouque, P., 1991, Third
Reference Catalogue of Bright Galaxies, Springer-
Verlag.

Dixon, R., and Sonneborn, G., 1980, A Master List of
Nonstellar Optical Astronomical Objects, Ohio State
Univ. Press.

Gallego, J., Zamorano, J., Aragon-Salamanca, A., and Rego,
M. 1995, “The Current Star Formation Rate of the
Local Universe”, Astrophys. J., 455, L1-L4.

Hopp, U., Kuhn, B., Thiele, U., Birkle, K., Elsasser, H., and

Kovachev, B. 1995, “A Redshift Survey for Faint
Galaxies towards Voids of Galaxies”, Astron.
Astrophys. Suppl., 109, 537-549.

Iovino, A., 2002, “Detecting Fainter Compact Groups:
Results from a New Automated Algorithm”, Astron. J.,
285, 2471-2489.

Maehara H., Noguchi, T., Takase, B., and Handa, T., 1987,
“Spectroscopic Analysis of Kiso Ultraviolet-Excess
Galaxies”, Publ. Astron. Soc. Japan, 39, 393-409.

Markarian, B. E., Lipovetsukii, V.A., Stepanian, Dzh.,
Erastova, L. K., and Shapovalova, A. I. 1989, “The
First Byurakan Survey – a Catalogue of Galaxies with
Ultraviolet Continuum”, Comm. Special Astrophys.
Obs., No. 62.

Miyauchi-Isobe, N., and Maehara, H., 1998, “The Second
Kiso Survey for Ultraviolet-Excess Galaxies. I”, Publ.
Natl. Astron. Obs. Japan, 5, 75-97 (KUGC 2nd-I).

Miyauchi-Isobe, N., and Maehara, H., 2000, “The Second
Kiso Survey for Ultraviolet-Excess Galaxies. II”, Publ.
Natl. Astron. Obs. Japan, 6, 1-39 (KUGC 2nd-II).

Miyauchi-Isobe, N., and Maehara, H., 2002, “The Second
Kiso Survey for Ultraviolet-Excess Galaxies. III”, Publ.
Natl. Astron. Obs. Japan, 6, 107-146 (KUGC 2nd-III).

Miyauchi-Isobe, N., and Maehara, H., 2003, “The Second
Kiso Survey for Ultraviolet-Excess Galaxies. IV”, Publ.
Natl. Astron. Obs. Japan, 7, 37-52 (KUGC 2nd-IV).

Miyauchi-Isobe, N., Takase, B., and Maehara, H., 1997,
“Erratum: Kiso Survey for Ultraviolet-Excess
Galaxies”, Publ. Natl. Astron. Obs. Japan, 3, 153-158.

Popescu, C., Hopp, U., Hagen, H. J., Elsasser, H. 1996,
“Search for Emission-line Galaxies towards Nearby
Voids”, Astron. Astrophys. Suppl., 116, 43-74.

Surace, C., and Comte, G. 1998, “The Marseille Schmidt
Survey for Active Star-forming Galaxies”, Astron.
Astrophys. Suppl., 133, 171-179.

Takase B., 1980, “Counts of Ultraviolet-Bright Galaxies and
Their Distributions in Clusters of Galaxies”, Publ.
Astron. Soc. Japan, 32, 605-612.

Takase B., and Miyauchi-Isobe, N., 1984, “Kiso Survey for
Ultraviolet-Excess Galaxies I”, Ann. Tokyo Astron.
Obs., 2nd Ser.,19, 595-638 (KUGC I).

Takase B., and Miyauchi-Isobe, N., 1985a, “Kiso Survey for
Ultraviolet-Excess Galaxies II”, Ann. Tokyo Astron.
Obs., 2nd Ser., 20, 237-281 (KUGC II).

Takase B., and Miyauchi-Isobe, N., 1985b, “Kiso Survey for
Ultraviolet-Excess Galaxies III”, Ann. Tokyo Astron.
Obs., 2nd Ser., 20, 335-392 (KUGC III).

Takase B., and Miyauchi-Isobe, N., 1986a, “Kiso Survey for
Ultraviolet-Excess Galaxies IV”, Ann. Tokyo Astron.
Obs., 2nd Ser., 21, 127-180 (KUGC IV).

Takase B., and Miyauchi-Isobe, N., 1986b, “Kiso Survey for
Ultraviolet-Excess Galaxies V”, Ann. Tokyo Astron.
Obs., 2nd Ser., 21, 181-217 (KUGC V).

Takase B., and Miyauchi-Isobe, N., 1987a, “Kiso Survey for
Ultraviolet-Excess Galaxies VI”, Ann. Tokyo Astron.
Obs., 2nd Ser., 21, 251-284 (KUGC VI).

Takase B., and Miyauchi-Isobe, N., 1987b, “Kiso Survey for
Ultraviolet-Excess Galaxies VII”, Ann. Tokyo Astron.
Obs., 2nd Ser., 21, 363-386 (KUGC VII).

The Second Kiso Survey for Ultraviolet-Excess Galaxies. V 3

本文8巻-1 06.1.12 9:51 AM ページ 3

Takase B., and Miyauchi-Isobe, N., 1988, “Kiso Survey for
Ultraviolet-Excess Galaxies VIII”, Ann. Tokyo Astron.
Obs., 2nd Ser., 22, 41-58 (KUGC VIII).

Takase B., and Miyauchi-Isobe, N., 1989a, “Kiso Survey for
Ultraviolet-Excess Galaxies IX”, Publ. Natl. Astron.
Obs. Japan, 1, 11-42 (KUGC IX).

Takase B., and Miyauchi-Isobe, N., 1989b, “Kiso Survey for
Ultraviolet-Excess Galaxies X”, Publ. Natl. Astron.
Obs. Japan, 1, 97-125 (KUGC X).

Takase B., and Miyauchi-Isobe, N., 1990, “Kiso Survey for
Ultraviolet-Excess Galaxies XI”, Publ. Natl. Astron.
Obs. Japan, 1, 181-206 (KUGC XI).

Takase B., and Miyauchi-Isobe, N., 1991a, “Kiso Survey for
Ultraviolet-Excess Galaxies XII”, Publ. Natl. Astron.
Obs. Japan, 2, 7-36 (KUGC XII).

Takase B., and Miyauchi-Isobe, N., 1991b, “Kiso Survey for
Ultraviolet-Excess Galaxies XIII”, Publ. Natl. Astron.
Obs. Japan, 2, 37-61 (KUGC XIII).

Takase B., and Miyauchi-Isobe, N., 1991c, “Kiso Survey for
Ultraviolet-Excess Galaxies XIV”, Publ. Natl. Astron.
Obs. Japan, 2, 239-265 (KUGC XIV).

Takase B., and Miyauchi-Isobe, N., 1992a, “Kiso Survey for

Ultraviolet-Excess Galaxies XV”, Publ. Natl. Astron.
Obs. Japan, 2, 399-429 (KUGC XV).

Takase B., and Miyauchi-Isobe, N., 1992b, “Kiso Survey for
Ultraviolet-Excess Galaxies XVI”, Publ. Natl. Astron.
Obs. Japan, 2, 573-600 (KUGC XVI).

Takase B., and Miyauchi-Isobe, N., 1993a, “Kiso Survey for
Ultraviolet-Excess Galaxies XVII”, Publ. Natl. Astron.
Obs. Japan, 3, 21-43 (KUGC XVII).

Takase B., and Miyauchi-Isobe, N., 1993b, “Kiso Survey for
Ultraviolet-Excess Galaxies XVIII”, Publ. Natl. Astron.
Obs. Japan, 3, 169-257 (KUGC XVIII).

Takase, B., Noguchi, T., and Maehara H., 1983, “A
Morphological Study of Ultraviolet-Excess Galaxies”,
Ann. Tokyo Astron. Obs., 2nd Ser., 19, 440-462.

Tomita A., Takeuchi, T., Usui, T., and Saito, M., 1997,
“Characteristics of Kiso Ultraviolet-Excess Galaxies”,
Astron. J., 114, 1758-1770.

Zamorano, J., Rego, M., Gallego, J., Vitores, A. G.,
Gonzalez-Riestra, R., and Rodriguez-Caderot, G. 1994,
“Study of Emission-Line Galaxies: Universidad
Complutense Madrid List”, Astrophys. J. Suppl., 95,
387

Nagako Miyauchi-Isobe, and Hideo Maehara4

本文8巻-1 06.1.12 9:51 AM ページ 4

The Second Kiso Survey for Ultraviolet-Excess Galaxies. V 5

Table V-2a. List of KUGs (A0465)

Table V-2b. List of KUGs (A0755)

Table V-2c. List of KUGs (A0827)

本文8巻-1 06.1.12 9:51 AM ページ 5

Nagako Miyauchi-Isobe, and Hideo Maehara6

Table V-2d. List of KUGs (A1109)

本文8巻-1 06.1.12 9:51 AM ページ 6

The Second Kiso Survey for Ultraviolet-Excess Galaxies. V 7

Table V-2e. List of KUGs (A1177)

本文8巻-1 06.1.12 9:51 AM ページ 7

Nagako Miyauchi-Isobe, and Hideo Maehara8

Table V-2f. List of KUGs (A1178)

Table V-2g. List of KUGs (A1179)

本文8巻-1 06.1.12 9:51 AM ページ 8

The Second Kiso Survey for Ultraviolet-Excess Galaxies. V 9

Table V-2h. List of KUGs (A1180)

Table V-2i. List of KUGs (A1250)

Table V-2j. List of KUGs (A1251)

本文8巻-1 06.1.12 9:51 AM ページ 9

Nagako Miyauchi-Isobe, and Hideo Maehara10

Figure V-1. Finding Charts

In the following pages, finding charts are shown for each KUG listed in the catalogue (Table V-2). These photographs are
reproduced from the Palomar Sky Survey blue prints (© 1960 National Geographic Society－Palomar Sky Survey reproduced
by permission of the California Institute of Technology). The chart is in magnification of 3.0 times (0.34´/mm), and the field of
11.8´ ×7.7´. The north is up, east to the left.

本文8巻-1 06.1.12 9:51 AM ページ 10

The Second Kiso Survey for Ultraviolet-Excess Galaxies. V 11

本文8巻-1 06.1.12 9:51 AM ページ 11

Nagako Miyauchi-Isobe, and Hideo Maehara12

本文8巻-1 06.1.12 9:51 AM ページ 12

The Second Kiso Survey for Ultraviolet-Excess Galaxies. V 13

本文8巻-1 06.1.12 9:51 AM ページ 13

Nagako Miyauchi-Isobe, and Hideo Maehara14

本文8巻-1 06.1.12 9:51 AM ページ 14

The Second Kiso Survey for Ultraviolet-Excess Galaxies. V 15

本文8巻-1 06.1.12 9:51 AM ページ 15

1. Introduction

Astronomy is a science of observation. Most astronom-
ical phenomena evolve over extremely long periods, and our
observations tend to give the impression that the universe is
static. Because of this apparent stasis, and also because of
the extremely large spatial scale of astronomical phenome-
na, astronomy has progressed as a mostly passive science,
unlike physics and chemistry where scientists can perform
fullscale real experiments. The only way astronomers can
control the boundary and initial conditions of the phenome-
na in the universe is through numerical experiments using
computers. Therefore, numerical experiments are far more
important in astronomy than in other sciences.

Recent remarkable progress in digital technology has
enabled us to perform huge and very fast numerical experi-
ments on computers. The size of numerical experiments in
astrophysics is getting larger, but these experiments are tak-
ing less time because of the increasing speed of computers.
We often refer to a computer system used for numerical
experiments as a “telescope for theoretical astronomy.” The
evolution rate of these telescopes is still going up, and now
we are able to compare the output from these theoretical
telescopes with that from real telescopes. In Astronomical
Data Analysis Center (hereafter called ADAC) of National
Astronomical Observatory of Japan (hereafter called
NAOJ), we have been operating a large computer system for
numerical astronomy since 1996 (Ito, 1997). Now a
vector/parallel computer and a cluster of fast PCs together
with the special-purpose computer for gravitational N-body
problem, “GRAPE”, serve as our theoretical telescope,
which is being nearly fully used by many clients for their
research. As for the details of the computer system in
ADAC, visit our webpage at http://www.cc.nao.ac.jp/ .

Although the progress in computer technology is
indeed marvelous, there is one thing we should take note of:
High speed computation is sometimes achieved at the cost
of numerical accuracy. High accuracy generally requires
cumbersome procedures: higher-order polynomial approxi-
mation, careful handling of round-off errors, use of huge and
complicated numerical tables for evaluating function values,
and so on. These treatments could cost a great deal of com-
putation time, which would run counter to efforts to achieve
high performance. The accuracy of floating-point structure
is standardized by IEEE (the Institute of Electrical and
Electronics Engineers, http://www.ieee.org/), espe-
cially by the so-called IEEE 754, and major computer prod-
ucts are supposed to adhere to this standardization.
However, IEEE 754 does not specify the accuracy of tran-
scendental mathematical functions such as sin(), cos(),
log(), or exp() that are provided by each computer ven-
dor; customers are obliged to believe what computer ven-
dors say as to the accuracy of these functions. And, as we
easily might anticipate, sometimes these mathematical func-
tions do not possess sucient accuracy in terms of scientic
research. Even if the numerical error in a single arithmetic
operation is very small, it could pile up and lead to a devas-
tating result, producing a totally dierent solution in a com-
puter simulation.

In this paper we exemplify some inappropriate numeri-
cal results caused by numerical inaccuracy in trigonometric
math libraries on certain computer platforms in
ADAC/NAOJ, and describe how we have dealt with the
problem so that clients’ numerical research is performed
without a serious flaw. At first in Section 2, we demonstrate
numerical errors that are typical of those we found in a
numerical integration involving trigonometric functions,
showing how the accuracy loss took place. Then, the cause
of the numerical inaccuracy is further dug up in Section 3.
We found that slight differences in the result of numerical

Publ. Natl. Astron. Obs. Japan Vol. 8. 17–31 (2005)

Inaccuracies of Trigonometric Functions in
Computer Mathematical Libraries

Takashi ITO and Sadamu KOJIMA*

(Received April 28, 2005)

Abstract

Recent progress in the development of high speed computers has enabled us to perform larger and faster
numerical experiments in astronomy. However, sometimes the high speed of numerical computation is achieved at
the cost of accuracy. In this paper we show an example of accuracy loss by some mathematical functions on cer-
tain computer platforms in Astronomical Data Analysis Center, National Astronomical Observatory of Japan. We
focus in particular on the numerical inaccuracy in sine and cosine functions, demonstrating how accuracy deterio-
ration emerges. We also describe the measures that we have so far taken against these numerical inaccuracies. In
general, computer vendors are not eager to improve the numerical accuracy in the mathematical libraries that they
are supposed to be responsible for. Therefore scientists have to be aware of the existence of numerical inaccura-
cies, and protect their computational results from contamination by the potential errors that many computer plat-
forms inherently contain.

Key words: numerical simulation, trigonometric function, celestial mechanics

*EXEC Corporation, Tsuji 1-9-1-214, Saitama 336-0025, Japan

本文8巻-2 06.1.12 9:59 AM ページ 17

trigonometric subroutines had ended up in a large and secu-
lar numerical error in some numerical integrations. In
Section 4, we explain the measures that we have taken
against the numerical errors. Porting a dependable mathe-
matical library such as GNU libm is always a good solution.
Section 5 is devoted to giving summary and discussion on
the whole subject. All through this manuscript, we use type-
writer face for programming related (or source code related)
items such as function names (ex. sin()), filenames (ex.
glib math.h), or command names (ex. gcc -O4).

According to our experience, computer vendors tend to
pay a great deal of attention to the high performance and
capacity of their products, but not to the accuracy of basic
mathematical libraries which play a significant role in scien-
tic and engineering calculation. Hence scientists have to pro-
tect their computational results from contamination by the
potential numerical inaccuracy that many platforms could
inherently contain: we are totally on our own as to whether
or not our numerical result is accurate enough with respect
to our purpose. This manuscript represents our first and pre-
liminary report dealing only with a small part of the poten-
tially huge problem of built-in numerical inaccuracies of
mathematical subroutines on various platforms we operate
in ADAC. We are going to continue examining the numeri-
cal inaccuracies in our computer system and improving the
measures we use to prevent these inaccuracies, details of
which we will publish as future reports.

2. Example of numerical error

In July 1998, ADAC upgraded the operating system of
the Sun SPARC workstations that were openly used for our
clients. This incident made us aware of the existence of
numerical inaccuracy in some of the built-in trigonometric
functions. In this section we briefly describe an example of
the accuracy loss we experienced after the upgrade.

Soon after we upgraded the operating system from
Solaris 2.5.1 to Solaris 2.6, we noticed that some of the
numerical results that we obtained differed from those
obtained before. We performed many kinds of comparison
tests, and found that in the new system, the accuracy of a
certain sort of numerical integration was definitely lower
than it used to be. More specifically, what our numerical test
told us was: the total angular momentum of gravitational N-
body systems was no longer conserved in a certain type of
numerical integration. It had been very well preserved until
the operating system was upgraded in July 1998. The non-
conservation of total angular momentum is illustrated in Fig.
1, which we will soon describe in detail.

The flawed calculation is just a regular numerical inte-
gration of a set of ordinary dierential equations that
describes the dynamics of a gravitational N-body system.
The purpose of the integration is to track the orbital motion
of the solar system planets over a long timespan along the
path described by Newton's equations of motion. These
kinds of calculations are very common, seen almost every-
where in the astronomical field.

In this particular integration, a symplectic integrator is
used. Since many of the systems that celestial mechanics
deals with compose a Hamiltonian system or its proximity,

numerical integration schemes specifically designed to
maintain the Hamiltonian structure are not only desirable
but promising. Symplectic integrators are exactly the
method that satisfies such a requirement. In general, sym-
plectic integrators conserve the total energy of the system
quite well, preventing artificial dumping or excitation due to
an accumulation of local truncation errors. Since the 1990s
when they were introduced to the field of astronomy and
astrophysics, symplectic integrators have definitely been one
of the most significant numerical integration schemes in
solar system dynamics.

Major symplectic integrators have a very important
property in addition to the preservation of total energy:
Explicit symplectic integrator rigorously preserves the total
angular momentum within the range of round-off errors
(Yoshida, 1990). This fact comes from the characteristic
commutation of an integral Φ(q, p) of a Hamiltonian H = T
(p) + V (q) to both kinetic energy T (p) and potential energy
V (q) where (q, p) are the canonical coordinate and momen-
tum, such as

{Φ(q, p), T (p)} = {Φ(q, p), V (q)} = 0 (1)

Though the energy integration does not have this prop-
erty, the momentum integrals and the angular momentum
integrals of gravitational N-body systems do. It is obvious
that this class of integrals is exactly conserved by the explic-
it symplectic integrators. This characteristic is supposed to
guarantee that the symplectic numerical error of the total
angular momentum in a gravitational N-body system has no
truncation error. Therefore conservation of the total angular
momentum in a gravitational N-body system can be a very
good testbed for numerical accuracy.

As a standard accuracy test, we took a dynamical
model of our solar system consisting of nine planets with the
current orbital elements (Standish, 1990). We integrated the
orbits of all planets for about 80,000 years using the
Wisdom–Holman symplectic map (Wisdom and Holman,
1991; Kinoshita et al., 1991). The source code is written in
C. This calculation is almost the same as what Ito &
Tanikawa (2002) did as a series of very long-term numerical
integrations of solar system planetary orbits over more than
4 billion years. A quick comparison of panels (a) and (b) in
Fig. 1 dramatically illustrates how the accuracy loss
appeared after the operating system upgrade. Fig. 1 (b)
shows the relative error of total angular momentum in this
integration on the old platform, Solaris 2.5.1. We can see a
good conservation of total angular momentum at the order
of 10–13 (panel (b) in Fig. 1 is magnified as panel (b) in Fig.
2). On the other hand, Fig. 1 (a) shows the same calculation
result computed on the new (current) platform, Solaris 2.8.
Now it is clear that the total angular momentum is not con-
served, creating a nearly linear secular error.

Here we have to mention a potential complication: The
result in Fig. 1 (a) was actually not calculated on the Solaris
2.6 platform that we mentioned before, but on the newer
Solaris 2.8 platform that we operate in 2005. But we have
confirmed that any Solaris platform newer than 2.6 yields
the same accuracy loss in this numerical integration as the

Takashi Ito and Sadamu Kojima18

本文8巻-2 06.1.12 9:59 AM ページ 18

Solaris 2.6 platform does. Also, the version of C compiler is
different before and after the operating system upgrade, as
we will see later in Table 1. Hence, readers might wonder
whether the accuracy loss was really caused by the upgrade,
and not by the change in compiler version. Here also, we
have confirmed that the accuracy loss occurring on this plat-
form does not depend upon the compiler, whether we use
Fujitsu C, SUNWorks Pro C, or GNU C. When you compile
C source codes on these platforms, mathematical libraries
are dynamically linked to runtime linkers for dynamic
objects such as /usr/lib/libm.so.1 which are sup-
plied by the operating system. This means you would obtain
almost the same result, i.e. almost the same accuracy loss in
this integration, even if you use different compilers. (There
could be a slight difference in numerical result depending on
how each compiler optimizes its arithmetic operations.)

We then applied this accuracy test to the wide variety
of computer platforms listed in Table 1. We tested a couple

of compile options for optimization, but no significant dif-
ference appeared as to the numerical error of angular
momentum conservation, whatever optimized option we
used. In Fig. 1, obviously there are two groups of results that
have produced different kinds of numerical errors in total
angular momentum. The first one, including panels
(a)(d)(g)(j)(k), produces linear-growing numerical errors.
The second group, including panels (b)(c)(e)(f)(h)(i)(l), pro-
duces much smaller errors. What quickly draws our atten-
tion is that using the same hardware platform, newer operat-
ing systems tend to display worse results: For example, the
newer Solaris (2.6 or later) yields a clear secular numerical
error as you can see in Fig. 1(a), while the result from the
older Solaris (2.5.1) looks much better (Fig. 1(b)). We see
the same trend as to SGI IRIX whose older version (IRIX
6.2; Fig. 1(e)) had produced a much better result than the
newer version (IRIX 6.5; Fig. 1(d)). An exception came
from Fujitsu's vector/parallel computer, the VPP series: the

Inaccuracies of trigonometric functions in computer mathematical libraries 19

Fig. 1. Numerical errors of total angular momentum in a nine-planet system that are theoretically zero within the accuracy of round-off errors.
The vertical scale is magnified 1012 times. (a) Solaris 2.8 + Fujitsu C 5.1.1, (b) Solaris 2.5.1 + Fujitsu C 4.0.2, (c) FreeBSD
5.3–RELEASE + GNU C 3.3.3, (d) IRIX 6.5 + MIPSpro C 7.3.1, (e) IRIX 6.2 + MIPSpro C 7.3, (f) RedHat 9 + Intel C 7.1, (g) RedHat
7.1 + Compaq C V6.4.9 on Alpha, (h) HP–UX 10.20B + HP C A.10.32.03, (i) HI–UX/MPP + Optimized C on Hitachi SR8000, (j)
UXP/V V10L10 + C/VP V10L10 on Fujitsu VPP300, (k) Super–UX R9.1 Rev. 1 + C/SX V2 Rev. 4.01 on NEC SX–5, and (l) UXP/V
V20L10 + C V20L20 on Fujitsu VPP5000. See Table 1 for more detail. Note that the panel (j) for UXP/V V10L10 with C/VP V10L10
on Fujitsu VPP300 has a much larger vertical scale (×150).

本文8巻-2 06.1.12 9:59 AM ページ 19

older version (VPP300; Fig. 1(j)) had produced extremely
large (two orders of magnitude larger) numerical errors
compared with any other platform. The newer version,
VPP5000, seems much better (Fig. 1(l)) as far as this test is
concerned.

If you take a closer look at the panels of the “good”
group (b)(c)(e)(f)(h)(i)(l) that yield small numerical errors in
Fig. 1, you can see slight differences in each of them (Fig.
2). Some of the errors might seem to be growing over a
longer timescale, leading us to suppose that it might lead to
a large secular numerical error sooner or later, as we see in
the “bad” group of panels, Fig. 1 (a)(d)(g)(j)(k). But fortu-
nately, previous research has demonstrated that most of the
fluctuating errors shown in Fig. 2 will not secularly increase.
For example, Ito & Tanikawa (2002) confirmed a very long-
term dynamical stability of the solar system planets over
more than 4 billion years using exactly the same numerical
integration scheme with the same dynamical model as we
used for the accuracy test described here. Ito & Tanikawa
(2002) used several different computer platforms for their
integrations: FreeBSD with GNU C, Solaris 2.5.1 with
Fujitsu C, HP–UX, and RedHat with Intel C. As far as their
long-term numerical integrations are concerned, the numeri-
cal error in total angular momentum of this system becomes
no larger than the order of 10–11, showing no secular error
over ～ 1010 years. Fig. 3 is an example of the conservation
of total angular momentum of the nine-planet system used in
Ito & Tanikawa (2002) calculated on a Solaris 2.5.1 plat-
form using Fujitsu C. The average error rate in their calcula-
tion is roughly ～ 10–11 /1010 years = 10–21 /year, which is
much smaller than that of ～ 10–16 /year of the panels
(a)(d)(g)(k) in Fig. 1, or ～ 1.5 × 10–14 /year of Fig. 1 (j).

3. Verification of the error cause

Browsing through the algorithm of the Wisdom–
Holman symplectic map, we guessed that the numerical
error described in the previous section perhaps was caused
by numerical trigonometric functions, especially sin() and
cos(). In the Wisdom–Holman symplectic map, the whole
operation of transforming from Cartesian coordinates to
orbital elements, advancing the mean anomaly of a particle,
and transforming back is efficiently encapsulated in Gauss'
famous f and g functions (Danby, 1992). In this procedure, a
value fg

●

－f
●

g is conserved as unity as

fg
●

－f
●

g = cos2∆u + sin2∆u = 1 (2)

over every drift step through which each planet moves along
its Keplerian orbit around central mass. Here ∆u is the dif-
ference in the eccentric anomaly of a planet over a stepsize.
Suppose a celestial body that orbits around its central mass
has the velocity v and position r at time t. The angular
momentum L of the body per unit mass is

L = r×v. (3)
r and v at time t are expressed by f and g as (Danby, 1992)

r = fr0 + gv0, v = f
●

r0 + g
●

v0, (4)

where v0 and r0 are the (constant) velocity and position vec-
tors at the initial time, t = 0. So L in (3) is expressed as

L = r× v
=(fr0 + gv0)×(f

●

r0 + g
●

v0)
=f f

●

(r0×r0) + fg
●

(r0×v0) + gf
●

(v0×r0) + gg
●

(v0×v0)
=(fg

●

– f
●

g) (r0×v0). (5)

If there is no numerical error and (2) holds, the last equation
in (5) becomes

r× v = r0×r0, (6)

which exactly denotes the conservation of angular momen-
tum. On the other hand, if (2) does not hold by numerical
error and fg

●

– f
●

g gets less than or more than unity, the rela-
tionship (6) is not satisfied and angular momentum is no
longer conserved. Based on this consideration, what we did
next was to check out how close to unity the numerical
value cos2 x + sin2 x is on our computer platforms. In partic-
ular, we focused on the dependence of results on operating
systems.

Due to the small eccentricities of solar system planetary
orbits, it is usually safe for us to use a constant timestep (i.e.
a nearly constant stepsize in eccentric anomaly, u) for the
numerical integration of planetary orbits, which is ten days
in this integration. This is nearly equivalent to 2π×
10/365.25 = 0.172 radian for Earth's orbit. However, the
planet that possesses a significant amount of angular
momentum and is largely responsible for the numerical error
is Jupiter, whose orbital period is about 11.862 years. Then
the 10-day stepsize is nearly equal to 2π×10/(365.25
11.862) = 0.0145 (～π/217) radian for Jupiter's orbit. So we
calculated the value cos2 x + sin2 x－1 in the x range of [－
π/128,π/128] using the stepsize of 2–27 ～
7.450580596923828125×10–9 radian with double-precision
arithmetic.

The results of this test are summarized in Fig. 4. In Fig.
4, deviation from zero of cos2 x + sin2 x－1 (which theoreti-
cally must be exactly zero) is normalized by the machine
epsilon of double-precision arithmetic, ε～ 1.110223024625
1565×10–16. We counted the relative frequency of each
error value described in Fig. 4, making histograms as in Fig.
5. Machine epsilon, as well as ulp (unit in last place), repre-
sents the most basic unit when we deal with numerical
errors in floating-point operations. We briefly summarized
the concept of floating-point formats and the IEEE 754 stan-
dard in Appendix A.1 and A.2.

In the left three panels, (a)(b) and (c) of Fig. 4, the
numerical deviation of cos2 x + sin2 x－1 from zero is dis-
tributed almost symmetrically along the horizontal y = 0
line. This is also obvious from the left three symmetric his-
tograms in Fig. 5. However if we look at the right three pan-

Takashi Ito and Sadamu Kojima20

1 Note that the sign of the average numerical errors shown in
Fig. 4 might not necessarily have a direct relation to the sign of the
secular numerical errors in Fig. 1, because we do not explicitly cal-
culate fg

●

– f
●

g = cos2∆u + sin2∆u in (2) when we compute the drift
step in the Wisdom–Holman symplectic map. We are still investi-
gating the detailed relationship between the sign of the numerical
errors in Fig. 4 and that in Fig. 1.

本文8巻-2 06.1.12 9:59 AM ページ 20

els, (d)(e) and (f), we immediately notice the asymmetry of
the numerical deviation along the y = 0 line, especially in
panels (e) and (f).

The most typical asymmetry comes from IRIX 6.5 with
MIPSpro C (Fig. 4(f)). On this platform, all the numerical
errors on the positive side are +2 (in units of double-preci-
sion arithmetic machine epsilon) while the errors on the neg-
ative side are –1. This means that if you choose arguments x
of trigonometric functions sin() and cos() repeatedly
and randomly from this range, [－π/128,π/128], the average
value of cos2 x + sin2 x－1 would be positive, resulting in
cos2 x + sin2 x－1 > 0. This asymmetry is also clearly
observed in Fig. 5 (f) where we see a high frequency bar at
the horizontal position (i.e. error value) of +2. This is a pos-
sible cause of the secular error in angular momentum in the
planetary nine-body problem mentioned in the previous sec-
tion through equations (2) and (5)1 .

The Solaris 2.8 platform running Fujitsu C (Fig. 4(e))
shows a similar pattern. In the range of |x| K 0.01, numerical
errors are distributed almost symmetrically along y = +1,
0, –1 lines on this platform. But when |x| L 0.01, we see the
error along y = +2 as well. If you take several x values
around x～ 0.0145 (which is close to the stepsize of eccen-
tric anomaly of Jupiter's orbit, as we explained) on this plat-
form, the average numerical error in cos2 x + sin2 x－1
would be positive, possibly causing the secular error in total
angular momentum. The asymmetric error on this platform
is also seen in Fig. 5 (e), but the asymmetry is less conspicu-
ous than in Fig. 5 (f) for IRIX 6.5 running MIPSpro C. This
is because the histogram Fig. 5 (e) is calculated over the
entire argument range of x, [－π/128,π/128], which includes
the range of |x| K 0.01 where numerical errors are distributed
in quite a symmetric way.

The result from RedHat 7.1 on Alpha running Compaq
C is quite interesting (Fig. 4(d)). On average, the numerical

error of cos2 x + sin2 x－1 on this platform seems symmetric
along the y = 0 axis; mainly along y = +1,0,－1 and several
points are seen on the lines y = !2. However if you closely
look at the lines y =!2 on this panel, you will see that the
errors are condensed and constitute a bunch of truncated
“lines” with a typical length of 0.002－0.003. If we choose
many values over the entire range of x in this panel, [－
π/128,π/128], the average numerical error of cos2 x+sin2 x–1
could be close to zero. However we have to notice that on
this panel, the short “lines” are distributed out of phase on y
= +2 and y = －2: if we take a look at a region of x where
there is one of these truncated “lines” along y = +2 (or y =
－2), there is no point along the other side, y =－2 (or y =
+2). Particularly at around x ～ 0.0145 with which we are
concerned now, the error points of cos2 x + sin2 x－1 are dis-
tributed along y =－1,0,+1 continuously and y = +2 as a
short “line”, which is not seen along y =－2 in this x range.
This condensation of the points along y = +2 raises the aver-
age numerical error of cos2 x + sin2 x－1 in this x range
above zero. This positive average error of cos2 x + sin2 x－1
on this platform can lead to the accumulation of the secular
error in total angular momentum as we saw in Fig. 1(a). The
asymmetric error on this platform is hardly seen in the his-
togram Fig. 5 (d) which has summed up the numerical errors
over the entire range of x, [－π/128,π/128].

In the left three panels (a)(b) and (c) of Fig. 4, numeri-
cal deviation of cos2 x + sin2 x－1 from zero is distributed
almost symmetrically along the line y = 0. Especially in the
panels of Fig. 4 (a) of FreeBSD + GNU C and (b) of Solaris
2.5.1 + Fujitsu C, errors are concentrated only on the y =－
1,0,+1 lines. So the average errors of cos2 x + sin2 x－1 are
expected to be nearly zero. This probably leads to the non-
existence of secular error in angular momentum on these
platforms as in Fig. 1(c) or (b).

Inaccuracies of trigonometric functions in computer mathematical libraries 21

Table 1. Major computer platforms we used for the accuracy tests described in this manuscript. VPP5000 (Fujitsu) is a VLIW-type RISC
processor with vector pipelines. VPP300 (Fujitsu) is an LIW-type RISC processor with vector pipelines. “5.3R” of FreeBSD denotes “5.3－
RELEASE”. Some platforms and compilers in this table are no longer available or supported as of May 2005.

OS Compiler Processor
Notation in Fig.

1 2 4,5 6 8

FreeBSD 5.3R gcc 3.3.3 Pentium 4 (c) (c) (a) (d)(j) (d)

RedHat 9 Intel C 7.1 Xeon (f) (f) (f)

UXP/V V20L10 C V20L20 VPP5000 (l) (l) (c) (e)(k)

UXP/V V10L10 C/VP V10L10 VPP300 (j)

Solaris 2.8 Fujitsu C 5.1.1 hyperSPARC (a) (e) (a)(g) (b)(h)

Solaris 2.5.1 Fujitsu C 4.0.2 hyperSPARC (b) (b) (b) (b)(h) (a)(g)

IRIX 6.5 MIPSpro C 7.3.1 R12000 (d) (f) (f)(l)

IRIX 6.2 MIPSpro C 7.3 Reality Engine (e) (e)

RedHat 7.1 Compaq C V6.4.9 Alpha 21264 (g) (d) (c)(i) (e)

HP–UX 10.20B HP C A.10.32.03 PA–RISC 7300 (h) (h)

Super–UX R9.1 Rev. 1 C/SX V2 Rev. 4.01 SX–5 (k)

HI–UX/MPP (03–00) Optimized C (01–00) SR8000 (i) (i)

本文8巻-2 06.1.12 9:59 AM ページ 21

In Fig. 4(c) that is for the new UXP/V on VPP5000, we
see another interesting phenomenon, though it is not directly
related to the numerical inaccuracy discussed in this manu-
script. The result from this platform seems symmetric
around y = 0, but includes many cos2 x + sin2 x－1 values
that are obviously smaller than the machine epsilon of IEEE
754 double precision arithmetic. This is due to the so-called
“multiply add/subtract instruction” particular to the
VPP5000 CPU. In this CPU, an operation containing multi-
plication as well as addition/subtraction can be optimized,
being performed by a single hardware instruction. During
the optimized operation, results of multiplications (such as
cos2 x or sin2 x) are added/subtracted before being rounded.
This is why the numerical errors shown in Fig. 4(c) are
sometimes smaller than the machine epsilon. In addition to
the VPP5000 CPU, Intel Itanium-2 has a similar “multiply
add/subtract instruction” architecture, where numerical
errors of arithmetic operations can sometimes be smaller
than those from conventional processors.

Now we think the accuracy test exhibited in Fig. 4 has
revealed many of the causes of the numerical errors shown
in Fig. 1. A remaining problem might be that the range of
argument x is quite small in Fig. 4, only from －π/128 to
π/128. This is because amount of output data this test creates
is so large (～ 2 Gbyte per test) due to the small stepsize we
used (2–27) that we cannot go through a very large argument
range, such as [0,2π]. To inspect a wide argument range, we
performed another kind of accuracy test for sin() and
cos(). We calculated sin() and cos() using both dou-
ble precision arithmetic (hereafter denoted by the subscript
"d") and extended-double (quadrupole) precision arithmetic
(hereafter denoted by the subscript “q”, computed in a
Fortran (real*16) environment) over a wider range of x
argument, [0,4π], with a larger stepsize of 2–16 . Then we
measured their difference, assuming the result from the
quadrupole precision arithmetic is closer to the true values
of sin x or cos x. To further reduce the amount of data, we
sum up every 1024 results in our calculation. In summary,
what we have calculated is a bunch of pair values

(

(

),

)

sin

cos

sin sin

cos cos

x

x

x

x

x

x

δ

δ

i

i

d q

d q

i

i

i

N

i

N

1

1

/

/

-

-

=

=

!

! (7)

for a series of x1 as x1 = 0, N∆x, 2N∆x, ..., where N = 1024
and ∆x / xi+1－xi = 2–16 , until x

1
reaches 4π. The result of

this test is summarized in Fig. 6. We chose six platforms
that are listed in one of the right-hand side columns of Table
1. As expected, Solaris 2.5.1 running Fujitsu C (Fig. 6(b)
and (h)) and FreeBSD 5.3-RELEASE running GNU C (Fig.
6(d) and (j)), neither of which indicated a secular error in the
conservation of total angular momentum in Fig. 1, yield
smaller errors than others do, ～10–15 . Results from the
Solaris 2.8 platform running Fujitsu C (Fig. 6(a) and (g))
shows larger errors compared with those of Solaris 2.5.1 and
FreeBSD, which possibly are related to the larger numerical
errors that this platform has shown in Fig. 1(a) and Fig. 4(e).

Interestingly, RedHat Linux on Alpha running Compaq
C (Fig. 6 (c) and (i)), which turned out to be equipped with

Takashi Ito and Sadamu Kojima22

Fig. 2. Some of the panels in Fig. 1 whose numerical errors look
much better than others are magnified: (b) Solaris 2.5.1 +
Fujitsu C 4.0.2, (c) FreeBSD 5.3–RELEASE + GNU C
3.3.3, (e) IRIX 6.2 + MIPSpro C 7.3, (f) RedHat 9 + Intel C
7.1, (h) HP–UX 10.20B + HP C A.10.32.03, (i)
HI–UX/MPP + Optimized C on Hitachi SR8000, and (l)
UXP/V V20L10 + C V20L20 on Fujitsu VPP5000. Notation
of the panels is the same as in Fig. 1. The vertical scale is
magnified 1012 times. See Table 1 for more detail.

Fig. 3. Numerical error of total angular momentum in a nine-planet
system from one of the very long-term integrations by Ito &
Tanikawa (2002) performed mainly on a Solaris 2.5.1 plat-
form using Fujitsu C. The vertical scale is magnified 1012

times.

本文8巻-2 06.1.12 9:59 AM ページ 22

inaccurate numerical trigonometric subroutines through our
previous tests, now shows better behavior in terms of δ sin x
and δ cos x. The error is around ～10–15 , smaller than that
from the old Solaris platform (Fig. 6 (b) and (h)), and even
as small as that from the FreeBSD platform (Fig. 6 (d) and
(j)). Nevertheless, as we have seen, this platform yields a
substantial error in the total angular momentum conserva-
tion as in Fig. 1(a), probably through the fine asymmetric
structure of numerical errors as shown in Fig. 4(d). This
apparently good behavior appeared because the fine struc-
ture of the numerical errors of sin() and cos() that we
saw in Fig. 4(d) are blurred by the averaging procedure over
every 1024 data points that we have done to draw Fig. 6 (c)
and (i). Hence the apparently good behavior of this platform
indicates in Fig. 6(c)(i) does not necessarily prove that this
platform is equipped with a very good numerical accuracy.

Note that in the panels for Fujitsu UXP/V on VPP5000
(Fig. 6(e) and (k)) and SGI IRIX 6.5 (Fig. 6(f) and (l)), verti-
cal scale is about an order larger than in the panels for other
platforms. This fact clearly demonstrates that these two plat-
forms have significantly larger numerical inaccuracies (i.e.
δ sin x and δ cos x) compared with other platforms.
Especially IRIX 6.5, which has shown an obvious secular
error in total angular momentum conservation in Fig. 1(d)
and an asymmetric error distribution in Fig. 4(f), exhibits

huge δ sin x and δ cos x in panels (f) and (l) of Fig. 6.
Fujitsu UXP/V did not show significantly large errors in
previous accuracy tests (Fig. 1(l) and Fig. 4(c)) in the limit-
ed range of trigonometric argument. But looking at the large
δ sin x and δ cos x in Fig. 6(e) and (k), we cannot be com-
pletely sure whether this platform will maintain numerical
results as accurate as it showed in Fig. 1(l) and in Fig. 4(c)
when we choose a wider range of trigonometric arguments,
for example, ones that give a considerable number of errors
in Fig. 6(e) and (k), such as x ～ 0.7π when δ sin x > 1.5×
10–14 (Fig. 6(e)).

Remember that among the secular numerical errors in
total angular momentum shown in Fig. 1, that from the old
UXP/V (V10L10) on Fujitsu VPP300 running C/VP exhibit-
ed far bigger, an error 103 to 104 times larger than those pro-
duced on other platforms (Fig. 1(j)). Since the old Fujitsu
VPP300 platform had been replaced to a new one (Fujitsu
VPP5000 with UXP/V V20L10) and gone before we per-
formed the series of accuracy tests as in Fig. 4, we cannot
know what the numerical errors on VPP300 would have
been if we performed the same accuracy test on this plat-
form. But fortunately, we had calculated δ sin x on the
VPP300 platform before the replacement, whose result is
shown as Fig. 7. As we expected, δ sin x on this platform is
about two orders of magnitude larger than other "well

Inaccuracies of trigonometric functions in computer mathematical libraries 23

Fig. 4. Residual of cos2 x + sin2 x－1 normalized by the double-precision arithmetic machine epsilon, ε ～1.1102230246251565×10–16 . (a)
FreeBSD 5.3–RELEASE + GNU C 3.3.3, (b) Solaris 2.5.1 + Fujitsu C 4.0.2, (c) UXP/V V20L10 + C V20L20 on Fujitsu VPP5000, (d)
RedHat 7.1 + Compaq C V6.4.9 on Alpha, (e) Solaris 2.8 + Fujitsu C 5.1.1, (f) IRIX 6.5 + MIPSpro C 7.3.1. The unit of x is radian, and
the x range is [－π/128, π/128] which is close to [－0.02454, +0.02454].

本文8巻-2 06.1.12 9:59 AM ページ 23

behaved" platforms like Solaris 2.5.1 or FreeBSD. As we
mention again later, the large error of this platform was
caused by its rounding mode which was not toward the near-
est as on most computer platforms, but toward 0 for reasons
of hardware. Though now we cannot reproduce the data
shown in Fig. 7 because the VPP300 platform is no longer
available, the result of cos2 x + sin2 x－1 on this platform
would have been quite asymmetric along y = 0 axis, if plot-
ted on a figure like Fig. 4, perhaps much stranger than what
are shown in Fig. 4(d), (e), or (f).

4. Measures to prevent numerical errors

Ever since we found the numerical inaccuracies and
understood their probable cause, we have been trying to
solve the problem, taking measures to protect clients of our
computer systems against encountering this kind of problem
in their numerical calculations.

What we did first was to look for a description of the
nominal accuracy of mathematical libraries provided by
computer vendors. Some documents turned out to have
descriptions of this issue (see Appendix A.3 for examples).
But since the actual implementation of mathematical func-
tions such as sin() and cos() are not specified in IEEE
754 floating point formats, we thought there was no guaran-
tee that the descriptions of the function accuracy (as in
Appendix A.3) were absolutely true; we just had to believe
what computer vendors told us. Next, we reported the exis-

tence of the numerical inaccuracies to the vendors of each
computer platform to ask their opinions. Responses from
computer vendors differed vendor by vendor.

4.1 Responses from computer vendors

4.1.1 Sun Microsystems (Solaris)

This vendor admitted that some trigonometric functions
such as sin() and cos() in their mathematical library
bundled with the newer Solaris (2.6 and later) use different
algorithms from the previous version: The previous version
of sin() and cos() on Solaris 2.5.1 used a 13th-order
polynomial approximation to obtain the values of these
functions, but the newer version employs a table-lookup
method. They said that the difference between old and new
sin() in double precision arithmetic was only the last bit
in fraction, and that it was actually out of the double preci-
sion digits and did not have an accuracy problem. However,
this vendor guaranteed that we could use the mathematical
library of Solaris 2.5.1 (hereafter called libm251.a)
which had greater accuracy, at least with respect to sin()
and cos(). The vendor promised that they would officially
support the old math library, libm251.a, if we encoun-
tered any inconvenience or troubles when using it. So we
copied libm251.a on all the new Solaris nodes and
announced to our clients that they could use this library by
using the link option -lm251 when they link their object

Takashi Ito and Sadamu Kojima24

Fig. 5. Histograms for the relative frequency of each error value described in Fig. 4. Notation of the panels is the same as in Fig. 4. The hori-
zontal unit is the double-precision arithmetic machine epsilon, ε ～1.1102230246251565×10–16 .

本文8巻-2 06.1.12 9:59 AM ページ 24

Inaccuracies of trigonometric functions in computer mathematical libraries 25

modules including sin(), cos(), and other mathematical
functions whose newer Solaris version might contain numer-
ical inaccuracies.

4.1.2 Fujitsu (VPP)

The numerical error that we saw on the old UXP/V
(V10L10) platform (Fig. 1(j) and Fig. 7) is far larger than on
any other platforms. When we asked the vendor about this
problem in 1999, the vendor explained that this was caused
by the fact that the rounding mode on this platform was not
toward the nearest but toward 0 for hardware reasons, large-
ly for computation speed. At that time we did not further
investigate the error source on this platform because we had
been planning to replace this old platform (VPP300) with a

new one, hopefully with new mathematical libraries with a
better accuracy. As we had hoped, the new system (UXP/V
V20L10 on VPP5000) exhibits better accuracy (Fig. 1(l))
than the old one, together with having a rounding mode
toward the nearest. But as we have checked the accuracy of
mathematical functions on the new platform in detail, it has
turned out that this platform might still contain some non-
negligible numerical error in some part of its mathematical
functions as we discussed around Fig. 6(e) and (k).

4.1.3 HIT (Alpha), Visual Technology (Alpha), and SGI
Japan (IRIX)

For Alpha (Tru64 or RedHat Linux) and IRIX plat-
forms that exhibited substantial numerical inaccuracy shown

Fig. 6. δ sin x (left panels) and δ cos x (right panels) defined by equation (7). (a)(g) Solaris 2.8 + Fujitsu C 5.1.1, (b)(h) Solaris 2.5.1 + Fujitsu
C 4.0.2, (c)(i) RedHat 7.1 + Compaq C V6.4.9 on Alpha, (d)(j) FreeBSD 5.3–RELEASE + GNU C 3.3.3, (e)(k) UXP/V V20L10 + C
V20L20 on Fujitsu VPP5000, (f)(l) IRIX 6.5 + MIPSpro C 7.3.1. The unit of x is π radian. Note that the vertical range of panels (e) and
(k) is about five times larger than those of (a)–(d) and (g)–(j), and that of panels (f) and (l) is about two times larger than that of (e) and
(k).

本文8巻-2 06.1.12 9:59 AM ページ 25

in Fig. 1(a) and (d), we first asked their vendors (HIT for
Tru64 on Alpha, Visual Technology for Alpha RedHat
Linux, and SGI for IRIX) if it was possible to modify the
default mathematical libraries. But it turned out that modify-
ing the existing mathematical library would be a formidable
task in terms of both time and cost. In the end, these vendors
decided to port a free mathematical library, libm in GNU
libc (hereafter called GNU libm and GNU libc, respective-
ly). We modified the source code of part of the GNU libm,
compiled the source code with optimization, made a library,
and let our customers use it. The resulting library exhibits
satisfactory accuracy for our purpose. In the next subsection
we describe the process that we took to port and use the
GNU libm on our computer platforms.

4.2 Porting and using GNU libm

We had been aware that the GNU libm in general yield-
ed good accuracy when it was used with GNU C (gcc).
However, for example on our Alpha platforms, the default
(= vender-recommended) C compiler was Compaq C, which
uses a dedicated math library called CPML (Compaq
Portable Math Library). According to its webpage
(http://h18000.www1.hp.com/math/), CPML is
“a collection of fast, reliable, highly accurate routines that
support a wide variety of mathematical functions across
popular operating systems, hardware architectures, and lan-
guages.” But as we have seen in previous sections, the accu-
racy of CPML with Compaq C on Alpha seems to have a
non-negligible problem, as does the MIPSpro C compiler on
our SGI IRIX platform (IRIX 6.4 or later).

Our first solution to the accuracy problem on Alpha as
well as on the IRIX platform was to port, optimize, and
install the GNU libm so that we can use it with gcc, which
is supposed to match the GNU libm quite well. Our proce-
dure to make an optimized GNU libm was roughly as fol-
lows: There might be a better way to achieve our purpose,
but what we did and how we did it is, we think, quite
straightforward and easy to implement.

(1) Select the part of the source code of the GNU libc
(glibc; we used version 2.1.2 at that time) that is
responsible for mathematical functions including
sin() and cos(), which we have focused on so
far.

(2) Modify the source code so that we can recompile it
on the target platform. Modifications are often nec-
essary around specific macros called weak_alias
or strong_alias in glibc which have the role
of absorbing the difference in interpreting names of
variables on different platforms.

(3) Recompile the modified source code by gcc with
appropriate optimized options such as -O3, and
make a bunch of relevant object modules *.o. The
default optimization option of glibc (2.1.2) is just
-O, not -O3 or -O4, for some reason that we do not
know.

(4) Archive all the object modules by ar, bundling
them into a single static library such as
libm_opt.a. Then we can use the optimized
GNU libm as usual with gcc such as
gcc source.c -lmgcc_opt

As we tested libm_opt.a in our Alpha environment,
it worked quite well as to accuracy, yielding a numerical
error as small as those on FreeBSD platforms. However, the
performance (= computation speed) of the GNU math
library with gcc is not as good as that of Compaq C with
CPML: The performance rate between Compaq C with
CPML and gcc with our GNU libm was about 1.2－1.8,
depending on the program we ran. We installed the GNU
libm not only on our Alpha platforms but on our SGI IRIX
platform where there were also no accurate trigonometric
function provided by the operating system. Though the opti-
mized GNU libm again worked quite well as to accuracy (as
good as that of FreeBSD platforms), we were not satisfied
with the computation speed: The performance rate between
MIPSpro C and gcc with the optimized GNU libm is
around 1.5. From the standpoint of compiler optimization on
local computer platforms, this performance difference might
be reasonable and rather obvious because commercial com-
pilers and mathematical libraries are usually much better
optimized and localized for a particular hardware platform
(such as Compaq C with CMPL for Alpha processors,
MIPSpro Compiler for MIPS processors, and Intel
Compilers for Intel processors) than is generic freeware such
as GNU products. Aside from potential accuracy problems
in these commercial compiling environments, we should
make use of their high performance in our numerical calcu-
lations.

What we gave some thoughts to then was: the mathe-
matical functions that we have so far found to have obvious
accuracy problems are sin() and cos(). Though there
may be other mathematical subroutines that contain signifi-
cant inaccuracy, for now it might be okay for us to use only
sin() and cos() among the ported GNU libm functions,
calling all the other mathematical subroutines from the
default library that is bundled with the operating system or
provided with commercial compilers. If in future we find a
problem in any mathematical functions other than sin()
and cos() in the default library, we would just have to
replace the troubled function in the default library for those
in the GNU libm.

Takashi Ito and Sadamu Kojima26

Fig. 7. δ sin x defined by equation (7) which was calculated on
UXP/V V10L10 with C/VP V10L10 on Fujitsu VPP300.
The unit of x is π radian. Note that the vertical range is
about 25 times larger than those of panels (a)–(d) and (g)–(j)
in Fig. 6.

本文8巻-2 06.1.12 9:59 AM ページ 26

In summary, here is what we have done for this pur-
pose:

(1) Rebuild specific mathematical functions in the
GNU libm such as sin() or cos() with appro-
priate optimization as we illustrated.

(2) Note that we have to rename the troubled functions
in the GNU library source code such as sin() to
glib_sin(), and cos() to glib_cos().
These will be the aliases for these functions in the
source code that we use. If you do not rename these
functions, they will be in conflict with the functions
with the same name in the os-default (or compiler-
bundled) mathematical library that we might link
later.

(3) According to the procedure that we described
before, make a library archive such as
libm_opt.a.

(4) Make a C header file in order to make the above
aliases available in our source programs. For exam-
ple,
extern double __glib_sin(double);
#define sin __glib_sin
extern double __glib_cos(double);
#define cos __glib_cos

(5) Suppose the C header is named glib_math.h.
Include this file wherever necessary in source code
such as
#include <math.h>
#include <glib_math.h>

This method principally enables us to deploy particular
mathematical functions (such as sin() or cos()) from
particular libraries (such as libm_opt.a) that we specify
when linking. As a compiler, we can use whatever we like,
such as Compaq C (ccc) on Alpha or MIPSpro C on SGI
IRIX. For example, a link option using Compaq C with
libm_opt.a will be like

ccc source.c -lm_opt -lm

In this example, only sin() and cos() are linked to the
source code from libm_opt.a through the -lm_opt
option, while other mathematical functions will all be con-
sulted by the default library through the -lm option. The
result of these measures is excellent as expected, achieving
satisfactory accuracy of the GNU libm, as well as high per-
formance of commercial compilers and libraries.

Ever since we discovered the existence of the numeri-
cal inaccuracies in sin() and cos() on certain computer
platforms, we have cautioned our clients and alerted them to
the potential inaccuracy of those functions. Our announce-
ment about this problem is available through e-mails and our
webpage, mainly in the form of FAQ (frequently
asked/answered questions). Also, we have summarized how
we optimized and installed the GNU libm in a brief docu-
ment, which we can share on request with any readers that
are interested in and are trying to solve this kind of problem.

5. Discussion

5.1 Further improvement of mathematical subroutines

As we mentioned first, the investigation of numerical
inaccuracies of mathematical functions that we have
described in this manuscript has just begun, and is still far
from completed. Sooner or later we will have to inspect
potential numerical inaccuracy that could be hidden in many
other math functions; for instance, other trigonometric func-
tions such as tan(), exponential and logarithmic functions
such as exp() or log(), or inverse trigonometric func-
tions such as asin(). Then we will need to check out, not
only the C language environment, but the Fortran environ-
ment that has been extensively used by numerical comput-
ing scientists for many decades. We should also check the
accuracy of mathematical functions not only of double-pre-
cision but of higher precision, such as quadrupole precision.
We have to continue performing accuracy tests on as many
kinds of platform as possible whenever we introduce a new
computer system with a new hardware/os/compiler environ-
ment, such as the 64-bit processor like IA–64 or Opteron.

As for the secular numerical error in angular momen-
tum described in Section 2, the most fundamental solution
would be to avoid using trigonometric functions when we
solve Kepler's equation, and to use more sophisticated algo-
rithms such as what T. Fukushima has proposed
(Fukushima, 1997). But even if we know there are new
methods that are better and more desirable for this purpose,
we cannot prevent our clients from using their own favorite
method (even if that is really obsolete!). For example, in
solving Kepler's equation, using a generic Newton's method
with trigonometric functions is quite popular due to its easy
implementation. Probably a certain number of researchers
still use it. Also, there are many other numerical problems
that inevitably involve transcendental functions. Therefore
detailed investigation of computer math libraries in this
manuscript is justified, and we believe it will be more
important and necessary in the near future.

Talking about future work, there is another direction to
go along this line: improving the algorithms themselves of
mathematical subroutines that possibly yield inaccurate val-
ues. In general, computer vendors keep the algorithms of
their mathematical subroutines classified. But it is not diffi-
cult to imagine that sin() and cos() functions in most
computer math libraries are based on Taylor expansion
series such as

･･･, (8)

･･･, (9)

Using this method, we might need to include a large number
of higher-order terms to maintain accuracy of approxima-
tion, especially when the absolute value of x is large.
However, incorporation of higher-order terms could signifi-
cantly increase the computation time. This is the point at
which computer vendors should devise some trick to
achieve high eciency when calculating transcendental func-
tions, keeping accuracy intact. For example, an algorithm to

()!n2
1

2 24 720

n

n

n

0

2
2 4 6()

x
x xx1

= - + - -
3

=

-
!cos x =

()!n
x

2 1 6 120 5040

n

n 0

3 5 7() x x x1

+
= - + - +

3

=

n2 1
x

+
-

!sin x =

Inaccuracies of trigonometric functions in computer mathematical libraries 27

本文8巻-2 06.1.12 9:59 AM ページ 27

calculate sin() and cos() is open to the public in the
GNU libc, glibc. glibc uses a polynomial of degree 14
for cos() and that of degree 13 for sin() on [0,π/4].
Based on this polynomial expansion, glibc adds a small but
smart modification for better accuracy, exploiting the addi-
tion theorem of trigonometric functions (see
README.libm in the glibc source package for technical
details). Judging from the fact that the GNU libm has given
us very good accuracy in tests, the algorithms implemented
in the GNU libc seem to score a greater deal, at least in nor-
mal use by numerical astrophysists, than other algorithms
provided by many computer vendors. Implementing this
kind of new technique as a local tool and providing it to our
clients might be a direction our computer center takes in the
near future, if the new routines are faster and more accurate
than the existing math libraries, and if they are easily imple-
mented.

There are already several studies along this line. For

example, if we are using the seventh-order Taylor expansion
polynomial for approximating sin x within the accuracy of
single precision arithmetic as

･･･,

(10)

Green (2003) found that we could obtain a much better solu-
tion just by adding a slight modification to the coeffcients in
polynomial (10) through the concept of minimax polynomi-
als as

(11)

In principle, we can apply this kind of method to many

Takashi Ito and Sadamu Kojima28

Fig. 8. Two sets of surfaces of sections by the standard map defined by equations (12). 50,000 points are plotted on each panel. The first set
consists of six panels, starting from (θ0, I0) = (0.90002, 0.19998): (a) Solaris 2.5.1 + Fujitsu C 4.0.2, (b) Solaris 2.8 + Fujitsu C 5.1.1,
(c) Solaris 2.8 + Sun WorkShop 6 Fortran 77 (real*16), (d) FreeBSD 5.3–RELEASE + GNU C 3.3.3, (e) RedHat 7.1 + Compaq C
V6.4.9 on Alpha, and (f) RedHat 9 + Intel C 7.1. The second set consists of three panels, starting from (θ0, I0) = (0.56261, 0.68744): (g)
Solaris 2.5.1 + Fujitsu C 4.0.2, (h) Solaris 2.8 + Fujitsu C 5.1.1, and (i) Solaris 2.8 + Sun WorkShop 6 Fortran 77 (real*16). Note
that the results in panels (c) and (i) are calculated by quadruple-precision arithmetic implemented in Fortran language (real*16) in
order to get a solution with higher accuracy.

本文8巻-2 06.1.12 9:59 AM ページ 28

other numerical transcendental subroutines and in other
arithmetic precisions as well.

5.2 Numerical error in chaos systems

At the end of this paper, let us show an example where
a very slight numerical error in a mathematical function can
be substantially magnified, ending up with a completely dif-
ferent solution.

A certain kind of numerical computation inevitably and
frequently deploys transcendental functions. A typical
example is in the field of dynamical systems research. A
convenient way to study phase space trajectories, particular-
ly in problems with two degrees of freedom, is to look at a
surface of section of phase space using a two-dimensional
map. Among numerous sorts of map, the standard map has
been studied for many decades for its simple form as well as
its deep significance in the field of nonlinear dynamics,
especially in that of chaos. The standard map, also known as
the Chirikov–Taylor map (Lichtenberg and Lieberman,
1992), is expressed by the n-th action In and angle θn as

Z

[

\

]]

]]

(12)

where K is the stochasticity parameter which controls the
degree of chaos of the system. Since the map (12) is con-
structed on the calculation of sin θn, we cannot avoid very
frequent use of sin().

Depending on K and initial starting point (θ0, Ι0), the
points that this map produces on the surface of section of
phase space can be distributed in a totally different way,
even when we start from a similar initial point. This is a typ-
ical behavior of chaos: high sensitivity to initial conditions.
In this kind of map, a very small error in numerical mathe-
matical functions such as sin() can be significantly mag-
nified, totally changing the numerical solution.

Fig. 8 shows examples of surface of section produced
by map (12), starting from a pair of initial points. First, each
of the six panels (a)－(f) in Fig. 8 shows 50,000 points start-
ing at an initial point (θ0, Ι0) = (0.90002, 0.19998) on several
different computer platforms. Among the six panels, what
we believe to be the closest to the true solution is (c), which
was calculated with quadruple precision (real*16) in
Fortran. The results in others (the panels (a)(b)(d)(e) and (f))
were calculated with double precision in C. Platforms that
yield solutions closer to that of the quadruple precision cal-
culation (c) are: (a) Solaris 2.5.1 with Fujitsu C, (d) GNU C
on FreeBSD, and (f) Intel C on RedHat Linux on Xeon. The
points on these three panels are distributed rather regularly,
being confined to the edges of stable islands. These three
platforms have indicated better accuracy in our previous
numerical tests. On the other hand, the results from Solaris
2.8 running Fujitsu C (b) and Alpha Linux running Compaq
C (e) are very different from others: the points are all scat-
tered on the vast sea of chaos. These two platforms have
turned out to have accuracy problems, as described in the
previous sections.

This kind of clear difference is also seen at some other

initial positions. Each of the three panels (g)－(i) in Fig. 8
shows 50,000 points starting from (θ0, Ι 0) = (0.56261,
0.68744). What we believe to be the closest to the true solu-
tion in this case is (i), which was calculated with quadruple
precision in Fortran, whose points are widely scattered over
the chaos sea. The points generated by the Solaris 2.5.1 plat-
form (g) again show good agreement with (i), while the
points produced by the new Solaris 2.8 platform (h) behave
differently, sticking to the border between regular solutions
and the sea of chaos.

The examples in Fig. 8 are some of the most typical of
those that exhibit acute differences in numerical results.
However, since the number of initial points in this phase
space that we have inspected for this test is limited, there
must be many more initial points that would produce groups
of points whose behavior differ depending on the computer
platform we use. These kinds of chaos systems exquisitely
illustrate the necessity to check and improve the accuracy of
numerical mathematical functions, a task that very few com-
puter vendors are willing to undertake.

Acknowledgments

The authors have benefited from useful information
from many people, especially from Norimichi Suzuki (HIT),
Atsushi Kawamata (Visual Technology), and some anony-
mous engineers at Fujitsu, SGI Japan, and Sun
Microsystems. Kouji Hamakawa and Chie Naitou (EXEC)
have provided and maintained excellent proving grounds for
the accuracy tests described in this manuscript. Detailed and
constructive review by Yolande McLean has, as usual, con-
siderably improved the English presentation of this paper.
The referee also suggested directions which bettered the
quality of this paper.

Appendix

Here we briefly summarize the concept of floating-
point formats (Section A.1) and its current standard, IEEE
754 (Section A.2), according to Sun Microsystems'
Numerical Computational Guide (see Section A.3 for the
relevant URL). We also mention the nominal accuracy of
numerical transcendental functions on several computer
platforms (Section A.3).

A.1 Floating-point formats

Floating-point representations have a base β (which is
always assumed to be even) and a precision p. In general, a
floating-point number will be represented as !d.dd . . . d×βe,
where d.dd . . . d is called the "significand" (or "mantissa")
and has p digits. More precisely, !d0.d1d2 . . . dp–1×βe repre-
sents the number

! (d0 + d1β
– 1

+ ... + dp–1β
– (p–1)) β e

, 0 # d
i
< β. (A.1)

The term "floating-point number" is used to mean a real
number that can be exactly represented in the format under
discussion. Two other parameters associated with floating-
point representations are the largest and smallest allowable
exponents, emax and emin. Since there are βp possible signifi-
cands, and emax－emax +1 possible exponents, a floating-point

Inaccuracies of trigonometric functions in computer mathematical libraries 29

I
n+1

= I
n
+ Ksinθ

n
,

θ
n+1

= θ
n
+ I

n+1

本文8巻-2 06.1.12 9:59 AM ページ 29

number can be encoded in log2 (emax－emax + 1) + log2 βp+ 1
bits, where the final +1 is for the sign bit.

There are a few reasons why a real number might not
be exactly representable as a floating-point number. The
most common situation is illustrated by the decimal number
0.1. Although it has a finite decimal representation, in bina-
ry, it has an infinite repeating representation. Thus, when β
= 2, the number 0.1 lies strictly between two floating-point
numbers and is not exactly representable by either of them.

Since rounding errors are inherent in floating-point
computation, it is important to have a way to measure these
errors. As an example, consider the floating-point format
with β = 10 and p = 3. If the result of a floating-point com-
putation is 3.12×10–2, and the answer when computed to
infinite precision is 0.0314, it is clear that this is in error by
2 units in the last place. Similarly, if the real number
0.0314159 is represented as 3.14×10–2, then it is in error by
0.159 units in the last place. In general, if the floating-point
number d.d . . . dβe is used to represent z, then it is in error
by |d.d . . . d (z/βe)|βp–1 units in the last place. The term
“ulps” is used as shorthand for “units in the last place.” If
the result of a calculation is the floating-point number near-
est to the correct result, it still might be in error by as much
as 0.5 ulp.

Another way to measure the difference between a float-
ing-point number and the real number it is approximating is
relative error, which is simply the difference between the
two numbers divided by the real number. To compute the
relative error that corresponds to 0.5 ulp, observe that when
a real number is approximated by the closest possible float-
ing-point number d.dd . . . dd×βe, the error can be as large
as 0.00...00β´×βe, where β´ is the digit β/2, there are p
units in the significand of the floating-point number, and p
units of 0 in the significand of the error. This error is
((β/2)β–p)×βe. Since numbers of the form d.dd . . . dd×βe

all have the same absolute error, but have values that range
between βe and β×βe, the relative error ranges between
((β/2)β–p)×βe/βe and ((β/2)β–p)×βe/βe+1. That is,

1–
2

β–p
#

1–
2

ulp # β–
2

β–p
. (A.2)

In particular, the relative error corresponding to 0.5 ulp

can vary by a factor of β. Setting ε = (β/2)β–p to the largest
of the bounds in equation (A.2), we can say that when a real
number is rounded to the closest floating-point number, the
relative error is always bounded by ε, which is referred to as
"machine epsilon". Machine epsilon of the IEEE 754 single
format (β = 2, p = 24) is about 5.9604645×10–8 , and that of
double format (β = 2, p = 53) is about 1.1102230246251565
×10–16.

A.2 IEEE 754

IEEE 754 is the arithmetic model specified by the
ANSI/IEEE Standard 754–1985 for Binary Floating-Point
Arithmetic. IEEE 754 requires β = 2, and specifies two basic
floating-point formats: single and double (Table A.1). The
IEEE single format has a significand precision of 24 bits (p
= 24) and occupies 32 bits overall. The IEEE double format
has a significand precision of 53 bits (p = 53) and occupies
64 bits overall. IEEE 754 also specifies two classes of
extended floating-point formats: single-extended and dou-
ble-extended. The standard does not prescribe the exact pre-
cision and size of these formats, but it does specify the mini-
mum precision and size. For example, an IEEE double
extended format must have a significand precision of at least
64 bits and occupy at least 79 bits overall. IEEE 754 also
specifies the precise layout of bits in a single and double
precision.

The accuracy requirements of IEEE 754 on floating-
point operations are: add, subtract, multiply, divide, square
root, remainder, round numbers in floatingpoint format to
integer values, convert between different floating-point for-
mats, convert between floating-point and integer formats,
and compare. Note that most mathematical functions that
we use in scientific calculation are not included in the
requirements here.

A.3 Accuracy of transcendental functions

As we summarized in the previous subsection, IEEE
754 specifies add, subtract, multiply, divide, square root,
and some other arithmetic operations, but not transcendental
functions such as sine or exponential. Hence, we have to
trust what computer vendors say as to the accuracy of
numerical transcendental functions that we use on the com-
puter. Collection of what computer vendors officially say
and/or publish about the accuracy of mathematical subrou-
tines might come in handy when we check the accuracy of
these functions. Here is a short list of URLs of webpages
where several computer vendors and groups release relevant
information to the public. On other platforms, you might as
well be able to consult this kind of information as on-line
manual pages, such as math(3M) on FreeBSD.

: Intel (IA–32) : IA–32 Intel Architecture Software
Developer's Manuals
http://developer.intel.com/design/pen-
tium4/manuals/index_new.htm#sdm_vol1
(See "8.3.10. Transcendental Instruction Accuracy")

: SGI (IRIX 6.5) : Online manual of TRIG(3M) of IRIX 6.5
http://techpubs.sgi.com/library/tpl/cgi-bin/getdo
c.cgi?coll=0650&db=man&fname=/usr/share/catman/p

Takashi Ito and Sadamu Kojima30

Parameter single double

p 24 53

emin –126 –1022

emax +127 +1022

Exponent width in bits 8 11

Format width in bits 32 64

Language Implementation

C, C++ float double

Fortran read*4 real*8

Table A.1. IEEE 754 format parameters and language types for sin-
gle- and double-precision arithmetic. Base β = 2.

本文8巻-2 06.1.12 9:59 AM ページ 30

_man/cat3/standard/fatan2.z&srch=sin
: SPARC : Numerical Computational Guide
http://docs.sun.com/app/docs/doc/806-
3568?q=numerical+computation+guide
(See Chapter 3 “The Math Libraries”, especially the sec-
tion “Implementation Features of libm and libsun-
math”)

: Fujitsu (UXP/V on VPP5000) : Though there is no official
document on the accuracy of numerical transcendental
functions on this platform, the development team kindly
measured the error of several transcendental functions in
double precision arithmetic and provided us with the result.
A part of the result that is relevant to this manuscript is: In
C V20L20 (vector), maximum errors in sin() is 1.67,
cos() is 1.77, and tan() is 2.23. In C V20L20 (scalar),
maximum errors in sin() is 0.67, cos() is 0.89, and
tan() is 1.38. The unit of error is ulp, and the tested argu-
ment range is [－π/4, π/4].
: GNU libc : The GNU C Library
http://www.gnu.org/software/libc/manual/html
_node/Errors-in-Math-Functions.html
(See Section “19.7 Known Maximum Errors in Math
Functions”)

References

Danby, J.M.A. (1992) Fundamentals of Celestial Mechanics
(second edition, third printing), Willmann-Bell Inc.,
Richmond, Virginia.

Fukushima, T. (1997) A method solving Kepler's equation
without transcendental function evaluations, Celes.
Mech. Dyn. Astron., 66, 309–319.

Green, R. (2003) Faster Math Functions, in 2003 GDC
Written Proceedings, Game Developers Conference,
San Francisco, CA,
http://www.gdconf.com/archives/2003/
index.htm,
http://www.research.scea.com/research
/pdfs/RGREENfastermath_GDC02.pdf.

Ito, T. (1997) VPP300 series in National Astronomical Obs-
ervatory, FUJITSU Sci. Tech. J., 33, 74–87.

Ito, T. and Tanikawa, K. (2002) Long-term integrations and
stability of planetary orbits in our solar system, Mon.
Not. R. Astron. Soc., 336, 483–500.

Kinoshita, H., Yoshida, H., and Nakai, H. (1991) Symplectic
integrators and their application to dynamical astrono-
my, Celes. Mech. Dyn. Astron., 50, 59–71.

Lichtenberg, A.J. and Lieberman, M.A. (1992) Regular and
Chaotic Dynamics, Springer-Verlag, New York.

Standish, E.M. (1990) The observational basis for JPL's DE
200, the planetary ephemerides of the astronomical
almanac, Astron. Astrophys., 233, 252–271.

Wisdom, J. and Holman, M. (1991) Symplectic maps for the
N-body problem, Astron. J., 102, 1528–1538.

Yoshida, H. (1990) Conserved quantities of symplectic inte-
grators for Hamiltonian systems, preprint.

Inaccuracies of trigonometric functions in computer mathematical libraries 31

本文8巻-2 06.1.12 9:59 AM ページ 31

