
Publ. Nat. Astron. Obs. Japan, Vol. 15, 1–17 (2020) 1

Abstract

We have upgraded the JVO ALMA WebQL web service - available through the JVO ALMA FITS archive - to

include legacy data from other telescopes, for example Nobeyama NRO45M in Japan. The updated server software has

been renamed FITSWebQL. In addition, a standalone desktop version, independent of the Japanese Virtual Observatory,

that runs on local end-user computers (laptops, desktops) and supports Linux, macOS and Windows 10 Linux Subsystem

(Bash on Windows) is also available for download from https://github.com/jvo203/fits_web_ql.

The FITSWebQL server enables viewing of even over 100 GB-large FITS files in a web browser running on a PC

with a limited amount of RAM. Users can interactively zoom-in to selected areas of interest with the corresponding

frequency spectrum being calculated on the server in near real-time. Hence at a glance users gain access to large easy-to-

see images as well as the corresponding frequency spectra that are visible both at the same time. The client (a browser) is

a JavaScript application built on WebSockets, HTML5, WebGL, SVG and WebAssembly.

The new FITSWebQL lays foundations towards supporting an interactive preview of terabyte-class FITS files. In

addition to handling larger files, FITSWebQL also improves support for real-time spectrum updates through tackling

the latency problem in two ways. First, it introduces an adaptive frame rate control: monitoring the network latency and

local web browser responsiveness, and reducing the frames-per-second (FPS) rate as and when necessary. Secondly,

our software tracks in real time end user's mouse movements with the Kalman Filter, which is then used to predict the

future target mouse position after taking into account the network latency and server-side computation time. Hence we

speculatively deliver ahead-of-time real-time spectrum data for positions where the user is likely to be looking at. The

new version also allows users to view multiple FITS files simultaneously either in a special RGB composite mode (presently

limited to NRO45M FUGIN only), where each dataset is assigned one RGB channel to form a single colour image, or as

separate image tiles. Spectra from multiple FITS cubes are shown together too.

The paper describes the main features of FITSWebQL and its technical architecture. We also touch on some of the

recent developments, such as a switch from C/C++ to Rust (see https://www.rust-lang.org/) for improved stability, better

memory management and “fearless concurrency”, displaying FITS data cubes in the form of interactive on-demand video

streams in a web browser or efforts to incorporate machine learning for an improved user experience.

Since version 3 FITSWebQL has had a robust choice of different colourmaps, automatic integration with the

Splatalogue molecular database, fixed and variable (auto-scaled) Y-Axis, synthesised beam overlay, manual reference

frequency/source velocity corrections as well as a 3D viewing mode and client-side contouring handled in JavaScript.

Key words: ALMA, NRO45M, WebQL, radio-astronomy, optical astronomy, FITS data cubes

FITSWebQL:
an interactive preview system for very large FITS data cubes

Christopher ZAPART* , Yuji SHIRASAKI, Masatoshi OHISHI, Yoshihiko MIZUMOTO, Wataru KAWASAKI,
Tsuyoshi KOBAYASHI, George KOSUGI, Eisuke MORITA, Akira YOSHINO, Yohei HAYASHI

(Received 2020 May 7; accepted 2020 Aug. 14)

* Corresponding author
Email address: chris.zapart@nao.ac.jp (C. Zapart)

C. Zapart, et al. 2

1. Introduction

The ALMA WebQL service (Allen et al., September
2013; Eguchi et al., 2013) operated by the Japanese Virtual
Observatory (JVO) first went into operation towards the
end of 2012. Since that initial release by Satoshi Eguchi
the ALMA project has been releasing ever larger FITS
files, prompting the JVO team to develop a revised second
edition (Zapart et al., 2019a) of the ALMA WebQL service
that subsequently went live in March 2016 using a vastly
upgraded hardware infrastructure. Since then, in order
to keep up with ever growing FITS file sizes coming out
of the ALMA observatory and also to offer improved
functionality, newer versions have been released on a
regular basis. For example, the version 3 — released in
2017 — introduced an experimental 3D view of FITS data
cubes. Another innovation introduced in the version 3 was
a switch from HTTP to WebSockets for a bi-directional
communication between the web browser and the ALMA
WebQL server located in Japan. This reduces the network
latency, helping deliver smoother real-time spectrum
updates compared to the previous version 2. The earlier
2nd edition introduced on an experimental basis real-time
spectrum updates (disabled by default) that only worked
well over a local network connection within the NAOJ
Mitaka campus in Japan. In the version 3, by default we
enabled real-time spectrum updates for all users worldwide.
To facilitate smooth updating of a spectrum following user
mouse movements, we continuously monitor the network
latency and local web browser responsiveness, reducing
the frames-per-second (FPS) rate as and when necessary.
Secondly, end-users' mouse movements are also tracked
in real time with help of the Kalman Filter, which is then
used to predict a future target mouse position after taking
into account network latency and computation time. In
the last resort, in case of a severe network deterioration
users still have the option to disable real-time updates from
the menu. Since version 3 users have been able to make
various on-the-fly image adjustments such as tuning the
noise sensitivity, trying out different global tone mapping
functions (i.e. logarithmic or logistic instead of linear) or
displaying contours, all handled locally in a web browser
via JavaScript. In order to facilitate fast on-demand
viewing of large ALMA datasets, we cache FITS files
locally using NVMe PCI Express Solid State Drives housed
in the ALMA FITSWebQL server.

Released in the second half of 2018 and completely re-
written from scratch in the Rust programming language

(Zapart et al., 2019b), the current version 4 features real-
time video streaming of individual frequency channels
from FITS data cubes. Since the 4.1.6 revision (released in
February 2019) FITSWebQL has had built-in support for
ZFP compression (Lindstrom, 2014) in order to reduce the
server storage requirements for cached FITS files. Readers
can access the service from the JVO Portal found at https://

jvo.nao.ac.jp/portal/top-page.do. The latest version 4 of
the software (which also includes a standalone desktop
edition) is freely available from the following GitHub
repository: https://github.com/jvo203/fits_web_ql.

An unchanging motivation behind this web service is
being able to provide a FITS file preview (quick-look) and
cut-out capability through a web browser. The service
allows end-users to view over 100 GB-large FITS files
in a web browser without ever having to download the
underlying FITS files. After previewing FITS files users
may choose to download interesting datasets either in
whole or to stream a partial region-of-interest (cut-out) from
the JVO server to their own computers.

This paper is not only a significantly extended version
of the proceedings contribution (Zapart et al., 2019b) but it
is also an invaluable source of detailed information on the
conceptual/technical design and implementation, which
cannot be provided within a short proceedings paper.

2. Main Features

This section takes a reader on a brief tour of FITSWebQL’s
main features.

2.1 Image overlay

The design of the FITSWebQL client web site strives to
be simple and intuitive. The goal is to reduce the amount
of user mouse clicks, to get out of the user’s way. In order
to fully maximise the available screen area, users are
initially presented with a large — browser-window wide
— spectrum plot overlay-ed on top of a large FITS image,
as shown in Figure 1. Moving a mouse anywhere over the
main FITS image brings up an additional overlay (either
a circle or a rectangle) displaying a zoom-in view of the
area around the mouse pointer. Using a mouse scroll
wheel users can enlarge or shrink the zoomed viewing
area. While a mouse is being moved over the main image,
the corresponding spectrum is re-calculated in real-time
on the server and sent via WebSockets to the browser for

FITSWebQL: an interactive preview system for very large FITS data cubes 3

display. Users can immediately notice that the Y-axis is
being re-scaled constantly to accommodate the changing
min/max range of the updated spectra. At any time by
pressing a keyboard key “s” a user can freeze the Y-axis
range to its present state. Users can re-enable the default
“auto-scale” behaviour at will from the FITSWebQL menu1
(Preferences/autoscale y-axis).

At this point it is worth mentioning an official ALMA
project for displaying ALMA datasets remotely in a web
browser: the CARTA viewer2. For a long time available
only as a standalone desktop application, only recently
— after having its development team changed — has it
gained a remote FITS file viewing capability via a web
browser. In contrast, for the most time FITSWebQL has
since its inception been the first and only product to offer
a remote viewing service. There is a single fundamental
difference between CARTA and FITSWebQL: a “per-cube”
and “per-plane” FITS image display. In FITSWebQL the
main image is calculated as an intensity integrated over
all 2D planes present in the 3D data cube (a “per-cube”
image). This differs from the recently renewed CARTA
viewer which by default displays an image of the first
plane only3. In addition, as far as the first author is aware
a long-standing image display and visualisation tool for
astronomical data — SAOImage DS94 — also only displays
“per-plane” images for radio-astronomy FITS data cubes.
Displaying per-plane images is faster as even in the case

of terabyte-class FITS files one needs to read-in from disk
only the first 2D plane before being able to show an image
to a user. In contrast, our approach — although more time
consuming — can be considered “more complete” as it
presents users with images constructed using entire data
sets. To this end we have optimised FITSWebQL from
the very beginning to read the entire FITS file as fast as
possible in order to present users with an image based on
the entire data. Specifically, FITS files are read in parallel
using multiple CPU cores utilising SIMD extensions (i.e.
AVX-512) as much as possible when making the necessary
endianness and then half-f loat conversions. The second
time a particular FITS file is being accessed we only read
the FITS header from the original FITS file. The data cube
itself will be read in parallel from an internal FITSWebQL
binary data cache that uses either 16-bit half-floats (for a 2:1
compression ratio) or ZFP compressed floating-point arrays
(Lindstrom, 2014) (a 4:1 compression ratio).

Figure 1: An integrated image/spectrum overlay with spectral lines pulled from Splatalogue. Object: Titan

1 No mouse clicks are required, the menu will appear automatically by
hovering a mouse anywhere near the top of the web page.

2 https://cartavis.github.io/
3 Changing the default setting will make CARTA calculate a “per-cube”

histogram used to display a single frequency channel image. However,
based on our ad-hoc tests the CARTA viewer seems to take much longer
than FITSWebQL to produce an all-data histogram and its corresponding
image/spectrum combination. To the best knowledge of the first author
there is no specific setting to make CARTA produce a “per-cube” image as
a summation of all frequency channels.

4 https://sites.google.com/cfa.harvard.edu/saoimageds9/

C. Zapart, et al. 4

When a user hovers a mouse over the X-frequency axis
located at the bottom of the screen, the JVO server sends
in real-time images corresponding to individual 2D planes
to the client web browser. These images are encoded in
the form of a monochrome HEVC video stream, decoded
in the browser using WebAssembly, the colourmap is then
applied and the final image is overlaid over the original per-
cube image. A user can also make a partial cut-out along the
X-axis with a mouse (a frequency sub-region selection) and
an image corresponding to a partial FITS cube will be sent
from the server together with an updated spectrum (also re-
calculated server-side).

One of the benefits of handling FITS files without relying
on external libraries (i.e. cfitsio or Starlink AST) is that the
relevant image/spectrum statistics can be built up in parallel
“on the f ly” whilst reading from disk the FITS data. In
addition, perhaps a lesser-known feature of FITSWebQL is
its ability to display FITS files loaded from external URL
resources (for example URLs of FITS files residing on the
Hubble Space Telescope web site). Whilst the FITSWebQL
slowly downloads an external FITS file, after an optional
GZIP decompression the incoming data chunks are
already being converted into the half-float format, statistics
gathered and the final image/spectrum is being built-up
incrementally.

2.2 FITS header handling

Another benefit of performing a custom FITS I/O is
the ability to adapt the processing logic based on detected
telescopes. For example, in case of data coming from the
Nobeyama NRO45M telescope we specifically look for a
“LINE” or “J_LINE” header keyword, which then enables
us to display this additional line information (i.e. 12CO).
This is illustrated in Figures 6 and 8.

FITSWebQL features three internal operating modes
based on the type of a detected telescope: optical, radio-
astronomy and X-Ray. We first attempt to detect the
telescope based on the “TELESCOP” keyword by looking
for strings such as “alma”, “ska”, “vla” or “nro45m”. Failing
that we also search the remaining header keywords for
any other hints, for example “ASTRO-F”, “HSCPIPE”,
“SUPM”, “MCSM”, “suzaku”, “hitomi” or “x-ray”. Relying
on the hints gained from the FITS header FITSWebQL
modifies the way the FITS cube data is loaded (for example
by ignoring “−1” pixel values in case of X-Ray data) and
displayed (i.e. switching to a “logistic” tone mapping
function for “ASTRO-F” data or preferring to use a “ratio”

tone mapping in optical astronomy).

2.3 Splatalogue integration

Beginning with ALMAWebQL v2.1 we introduced
a spectral lines overlay (NIST Recommended Rest
Frequencies by Frank J. Lovas (Lovas, 2009 Revision))
posit ioned over the bot tom f requency axis. Since
FITSWebQL v3 we have gone further by offering a
seamless integration with version 3 of the full Splatalogue
database (Markwick-Kemper et al., 2006), which also
contains the NIST rest frequencies amongst other sources.

The Figure 1 illustrates integration with the Splatalogue
where upon moving/hovering a mouse over the X-axis a
dark pop-up window in the bottom left-hand side5 displays
details about spectral lines in the vicinity of the mouse
pointer. Furthermore, in the Figure 2 the reader can see how
from the top “Splatalogue” menu one can select sources for
spectral lines as well as adjust the line intensity cut-off in
order to show/hide weaker spectral lines.

For convenience we have also introduced a direct
shortcut to the Splatalogue web page: by pressing the
“ENTER” key with a mouse pointer positioned over
the X-axis users can open up a new tab containing a
Splatalogue web page centred around the currently selected
frequency.

2.4 Image manipulation

The “Image” menu (see the Figure 3) offers a typical
choice of several tone mapping functions that are used to
convert the dynamic-range 32-bit floating-point intensity
pixels into the 8-bit range of a computer display. From the
same menu users can also change colourmap preferences.
The menu is completely interactive. Based on a currently
selected tone mapping function, users can adjust with a
mouse the image noise sensitivity and/or the black/white6
histogram cut-off levels.

2.5 Contour lines

Image contours can be enabled via a View/contour
lines menu item as shown in the Figure 4. Contouring

5 The spectral lines pop-up window will move to the right side when a mouse
moves to the left area so as not to obscure the relevant spectrum view.

6 Most tone mapping functions imply the use of black/white levels. The
exception is the logistic setting for which users can adjust the histogram
median level instead.

FITSWebQL: an interactive preview system for very large FITS data cubes 5

Figure 2: Full Splatalogue v3 integration. Object: Orion KL

Figure 3: An interactive image manipulation menu. Object: Cotton Candy Nebula

itself is performed on the client side in the browser using
a JavaScript version of the Marching Squares algorithm
(Maple, 2003). Taking advantage of the Web Worker API,
we have offloaded the calculation of multiple contour levels
to multiple parallel web workers. The View menu also
contains many other items allowing the user to control

various aspects of the User Interface. Perhaps the most
interesting item might be the 3D surface, which displays a
screen-wide three-dimensional view of the main intensity
image (see the Figure 5). With a mouse users can zoom-
in and out and/or rotate the 3D surface. This feature is
also implemented client-side with help of the WebGL-

C. Zapart, et al. 6

accelerated Three.js JavaScript library.
Keen users are encouraged to explore all the remaining

menu options. There is also a brief Help menu available in
the right hand side.

2.6 Multiple datasets

For over two years now — starting with version 3
— FITSWebQL has supported viewing more than one
dataset at a time. Initially requested by the Nobeyama
45m radio-telescope team, in version 4 we have extended

Figure 4: Client-side contouring using the Marching Squares algorithm. Object: the Sun

Figure 5: An interactive 3D view with Three.js WebGL. Object: Western Wall

FITSWebQL: an interactive preview system for very large FITS data cubes 7

the support for multiple datasets to optical astronomy too.
Furthermore, two distinct viewing modes are available: an
RGB composite mode (see Figures 6 and 7), reserved for up
to three datasets, and an unrestricted tile view mode (see
Figures 8 and 9). In particular viewing datasets for multiple
spectral lines (i.e. 12CO, 13CO and C18O) side-by-side in the
tile mode is informative. The Figures 8 and 9 show how,

depending on the number of datasets, the tile mode adjusts
automatically the placement and size of images. One major
limitation of the current implementation is the need for the
FITS headers belonging to multiple datasets to be aligned
perfectly in all axes (in other words world coordinates
and image dimensions must match). The reason being that
pixel (and not world) coordinates are being exchanged

Figure 6: RGB composite mode for up to three datasets (radio astronomy, NRO45m). Object: Galactic Plane

Figure 7: RGB composite mode for up to three datasets (optical astronomy, Subaru HSC).

C. Zapart, et al. 8

during a communication between the browser client and the
FITSWebQL server. Both the client and the server currently
expect that world coordinates should correspond to the
same physical pixels across multiple datasets. We will try to
remove this restriction in future versions, allowing users to
view partially or even non-overlapping datasets.

3. Technical Architecture

The new version 4 initially started as a small feasibility
study to find how easy it would be to re-implement the
server part of C/C++ FITSWebQL v3 in Rust. There are
good reasons for switching from C/C++ to a new systems

Figure 8: Tile-view mode (radio astronomy, NRO45m). Object: Galactic Plane

Figure 9: Tile-view mode (optical astronomy, Subaru HSC). In this example users can view simultaneously seven FITS datasets (each
one corresponding to a dierent filter), with the image zooming in/out and panning being coordinated across all the tiles.

FITSWebQL: an interactive preview system for very large FITS data cubes 9

programming language such as Rust as it brings significant
benef its, for example memory safety (no memory
leaks), thread safety (no data races), better (smoother)
multithreading compared with OpenMP in C/C++ and a
complete lack of segmentation faults (no crashes) due to
inherent safety measures built into the Rust language (see
the Table 1 for a comparison between C/C++ and Rust). It
is certainly possible to write bug-free programs in C/C++
that are free of memory leaks and do not crash. However,
from a programmer’s standpoint Rust makes accomplishing
these tasks easier, all without sacrificing performance.
In addition, Rust has an integrated HTTP/WebSockets
networking library: actix-web that compares favourably
with the previously used disjointed mix of C libmicrohttpd
and C++ μWebSockets.

With the Rust port under-way work we had also been
working on adding video streaming capability to the main
v3 C/C++ code base. However, once all the bottlenecks in
Rust have been identified and dealt with, another benefit has
come to light: the original C/C++ code base had become
rather complex and adding new functionality has turned

into an error-prone process running the risk of introducing
memory leaks and bugs. Hence we decided to complete the
switch-over from C/C++ to Rust and add streaming video
functionality to the new Rust version 4. The Figures 10–11
(the Kalman Filter part will be explained in a separate
subsection) present a client-server architecture of the new
Rust version.

A two-way communication between the client (a web
browser) and the Rust server occurs over WebSockets. The
WebSockets technology halves the network latency and
is more efficient in handling small messages compared
to traditional AJAX HTTP requests. On the server side,
the Rust language binds together various C/C++ libraries
for which there is no high-performance 100 % pure-Rust
implementation available. In particular, the computation-
intensive parts are SIMD-parallelised using the Intel SPMD
Program Compiler7. Unfortunately the no-crash guarantees
do not extend to non-Rust external libraries which may
leak memory and may contain segmentation fault-causing
defects. Programmers need to be very careful when
choosing which C/C++ libraries to call from Rust.

C/C++ Rust
mutable by default (a const keyword is needed to prevent
accidental data manipulation)

immutable by default (all variables are constants), an opt-
in (let mut x = …) is needed to enable subsequent writes

variables can be written to by another thread without any
synchronisation

threads/functions take ownership of variables (only one
owner at a time can write)

by default a lax compiler, beware of unexpected compiler
bugs

the Rust compiler (borrow checker) is extremely strict;
initially it may take a long time (mental gymnastics) to
get a code to compile

the compiler does not catch any common memory bugs, a
programmer needs to maintain a high state of alertness at
all times, external memory-checking tools like valgrind
are needed

the st r ict compiler helps prevent many common
programming mistakes, dangling pointers etc., resulting
in safer programs containing fewer bugs

a fast auto-vectorised code either with the paid-orfor
Intel C/C++/Fortran compiler or a free Intel SPMD
Program Compiler
https://ispc.github.io/

the default auto-vectorisation can be hit-or miss; easy
integration with the Intel SPMD Program Compiler via an
ispc-rs Rust crate
(package): https://github.com/Twinklebear/ispc-rs

error/exception handling an after-thought; it is easy to skip
error checks during prototyping and then omit/forget to
add proper error handling during production

forces a programmer to decide how to handle errors at
every step, resulting in more reliable programs

excellent Parallel STL with C++17/20, easy parallelism
with OpenMP

excellent data parallelism library Rayon
https://github.com/rayon-rs/rayon

using OpenCL for GPGPU may be a bit cumbersome (a lot
of low-level plumbing)

low-level OpenCL complexity is hidden from the end-user
in an easy-to-follow Rust ocl crate
(package): https://github.com/cogciprocate/ocl

WebAssembly with Emscripten:
https://emscripten.org/

native WebAssembly (Wasm) support:
https://github.com/raphamorim/wasm-and-rust

Table 1: C/C++ versus Rust feature comparison.

C. Zapart, et al. 10

client
a web browser

server
the Rust language

(HTTP, WebSockets)

duplex, real-time

WebSocket API

HTML5
JavaScript
SVG (d3.js)

WebGL (three.js)
WebAssembly
(native speed

video decoding)

Intel SPMD
Program Compiler

(efficient SIMD)

libyuv
(image scaling)

libvpx
(Google VP9
video codec)

x265
(real-time HEVC
video encoding)

FPZIP
(spectrum

compression)

ZFP
(FITS cube

compression)

Intel IPP
(image scaling)

support in all modern browsers

web browser

mouse movements

C code compiled
to WebAssembly:

decode YUV brightness
apply colourmap

write RGBA pixels onto
HTML5 Canvas

server
1D Kalman Filter:
predict the future
mouse movement

x265 called from Rust:
encode a video frame

request
a video frame

binary
WebSocket

near real-time

web browser

C code compiled
to WebAssembly:

FPZIP decompress

server

LTTB:
downsample spectrum

FPZIP called from Rust:
compress spectrum

request
a spectrum

binary
WebSocket

near real-time

2D Kalman Filter:
predict the future
mouse movement

Intel ISPC:
SIMD acceleration

Intel ISPC:
SIMD acceleration

Figure 10: FITSWebQL v4 client-server architecture. This is an updated version of Figure 1 adopted from Zapart et al. (2019b).

Figure 11: WebAssembly (Wasm) acceleration for a near-native speed execution in a web browser. This is an updated version of Figure 2
adopted from Zapart et al. (2019b).

FITSWebQL: an interactive preview system for very large FITS data cubes 11

On the client side we have taken advantage of the latest
developments in browser technologies. Specifically we
adopted WebAssembly (Wasm) that allows developers to
compile C/C++ code to a binary Wasm stack machine code
executed at a near-native speed inside a web browser8.
In particular we have managed to accelerate greatly with
WebAssembly the CPU-intensive parts: real-time decoding
of HEVC video frames and the application of a user-
specified colourmap to grey-scale video frames.

3.1 VP9 vs. HEVC comparison

During the initial development we originally intended
to use the HEVC (via its x265 encoder library) codec to
handle real-time video streams. However, finding a suitable
JavaScript and/or Wasm decoder proved impossible. The
resources freely available on the Internet did not meet
our requirements. They were too outdated; they did not
support the latest HEVC specification. As an alternative,
after exploring other codecs i.e. Cisco’s Thor, initially we
integrated Google’s VP9 libvpx library into our project.
However, due to inferior multithreading capabilities of
libvpx and codec inefficiencies compared with a superior
HEVC solution, we decided to return to using HEVC/
x265. Due to a difficulty in finding a suitable off-the-shelf
browser-based HEVC decoder, we adapted the HEVC
decoding part from the FFmpeg C library and compiled it to
WebAssembly for fast native execution in a web browser.

As a result of this somewhat “convoluted” development
process, as of now the VP9 library is still used to compress

FITS 2D images (as VP9 still key-frames) for display in
a browser whilst the more capable HEVC x265 library
handles real-time video streaming. The Table 2 highlights
the pros and cons of the two video codec formats.

3.2 Machine learning

Since FITSWebQL version 3 we have been employing
rudimentary machine learning techniques in order to
improve the end-user experience. One example is the
use of a simple Kalman Filter (Kalman, 1960) to predict
future mouse movements performed by end users. When a
user moves a mouse over the main FITS image its screen
coordinates are sent through a WebSocket connection
to the JVO server in Mitaka, Japan. The server then
calculates a spectrum corresponding to a current viewport
and sends it back to the client browser over the network.
The process works very well in real-time for users whose
physical locations are in a close proximity to the JVO
server. However, for bandwidth-constrained users located
on another continent or for those with high-latency network
connections, the round trip from the user computer to
the server and back may well take about 500 ms or more.
During the time is takes for the messages to travel to the
server and back a user might have already moved a mouse
away from the original position. This might result in a
potential discrepancy: a user is looking at one location
on the screen but the spectrum displayed in the browser
corresponds to different (previous) location. As a mitigation
measure we periodically monitor the communication
latency between the client and the server. Then a client-side
Kalman Filter coded in JavaScript is used to predict future
mouse positions after taking into account the network

7 The open-source Intel SPMD compiler (see https://ispc.github.io) should
not be confused with the paid-for Intel C/C++/Fortran compiler suite.

8 https://webassembly.org

Google’s VP9 (libvpx) HEVC (x265)
libvpx library: both an encoder and decoder x265 library: only an encoder (search the Internet for a

decoder to suit your task)

slower, less ecient encoding, inferior multithreading faster than libvpx, more ecient (bandwidth-friendly),
scales well across all CPU cores

no grey-scale (an overhead of handling redundant RGB/
YUV channels)

YUV 4:0:0 support (server-encode as grey-scale, add
colour in the client)

an easy API, t r iv ial to compile the decoder into
WebAssembly

extreme diculty finding a suitable JavaScript decoder
(DIY: FFmpeg C API compiled to WebAssembly)

a royalty-free codec (no licensing issues) expensive codec royalties hindered an early widespread
adoption

Table 2: A side-by-side comparison of Google’s VP9 and HEVC video codecs together with their corresponding C API libraries. This is
an extended version of Table 1 adopted from Zapart et al. (2019b), with the licensing information added at the bottom.

C. Zapart, et al. 12

latency. Only when a mouse comes to a complete stop do we
submit real (not predicted) coordinates to the JVO server.
The Kalman Filter — this time server-side — is used in
a similar way when a mouse is moved over the bottom
frequency axis and a video stream consisting of individual
frequency channel 2D images is encoded in real time on the
server and streamed back to the client browser. The Figure
11 illustrates the whole process.

In a deliberate effort to present users with images of
FITS datasets that are both scientifically informative as
well as pleasing to the eye, we have trained a small logistic
regression classifier (Murphy, 2013) to provide an initial
“optimum” setting for the image tone mapping function
seen in the Figure 3. As illustrated in the Figure 12 the
entire image histogram (1024 bins) is converted into an
empirical cumulative distribution curve containing real
values between 0 and 1. These values form 1024 inputs
to the logistic regression model. There are five outputs
corresponding to possible choices for the tone mapping
function: linear, logarithmic, logistic, ratio and square.
Whilst not perfect the model provides an adequate default

setting for the majority of astronomical images. Moreover,
users not satisfied with that initial setting can always
override manually the automatic guess via the Image menu.
The Figures 13 and 14 provide an example of this feature
in action. We visually compare the default linear tone
mapping function applied by the SAOImage DS9 image
display and visualisation tool for astronomical data (Figure
13) against the ratio tone mapping automatically selected
by our tool (Figure 14). Whilst SAOImage DS9 displays
with clarity the high-intensity object of interest located
at the centre of the image, our FITSWebQL software can
also display the surrounding low-intensity background
area, thus saving users the need to change manually the
colour scaling settings in order to check whether or not
something interesting (for example gas flows) lies around
the main object. To be fair in most cases the default linear
tone mapping function applied by SAOImage DS9 does a
reasonable job of conveying the information contained in
astronomical images. But the existence of many exceptions
to this “rule” has prompted us to automate the tone mapping
selection process.

Figure 12: A simple logistic regression classifier. The probabilities of five choices for the image tone mapping function are predicted
based on the empirical cumulative distribution function (cdf) derived from the image histogram. Note: the hand-drawn cdf curve is for
illustration purposes only; it does not reflect a true empirical cumulative distribution function that would correspond to the histogram
shown below it.

FITSWebQL: an interactive preview system for very large FITS data cubes 13

Figure 13: Visualisation of a sample ALMA dataset in SAOImage DS9 using a default linear colour scaling transformation. Object:
J0854+2006

Figure 14: Visualisation of a sample ALMA dataset in FITSWebQL using a default ratio tone mapping function selected automatically by
a rudimentary AI algorithm. Object: J0854+2006

C. Zapart, et al. 14

Going one step further, if the FITSWebQL determines
(based on the FITS header) that the underlying image
comes from an optical telescope, and the selected tone
mapping function (either predicted by the model or
manually selected by a user) is set to ratio, a bi-section
method is used to find automatically an optimum initial
noise sensitivity setting (a slider in the Figure 3) such that
the average image brightness on a scale between 0 and 1 is
close to 0.1. This feature helps ensure that optical images
containing bright stars “just look good”. Again, the Figures
15 and 16 help underscore the effectiveness our software. A
visual inspection of the Figure 15 — a default output from
SAOImage DS9 — reveals a somewhat blurred or washed-
out image of stars and galaxies. However, by automatically
pre-selecting an appropriate tone mapping function and
adapting automatically to the background noise, our
FITSWebQL tool displays with a better clarity many more
stars and galaxies (Figure 16).

3.3 Data compression

Introduced as one way9 of dealing with ever growing
FITS file sizes, the current version 4 of FITSWebQL uses
a layered compression scheme. Ultimately the original
f loat32 FITS data is held in RAM in a 16-bit half-f loat
format, which means that displaying a 100 GB-large FITS
file requires only 50GB of RAM. Half-f loat numbers
can be converted to f loat32 very fast on modern CPUs.
Moreover, some versions of AVX can perform in hardware
arithmetic operations on a half-float data type. The next
layer of compression is employed in the internal FITS
file cache used by FITSWebQL. Here, 3D FITS data
cubes are stored as ZFP fixed-rate compressed floating-
point 2D arrays (Lindstrom, 2014): each 2D plane is
compressed independently with a compression ratio of 4:1.
Upon loading a FITS file into RAM the data is first ZFP-
decompressed and converted into half-float. When a new
FITS file is opened for the first time, it will be converted
into half-float and then also compressed with ZFP for faster
subsequent accesses directly from the FITSWebQL cache.

3.4 Distributed FITSWebQL

Compression alone — no matter how aggressive —
probably cannot solve the problem of dealing with near-
future Terabyte-class FITS files using present hardware.
To this end we are experimenting with dist r ibuted
computing, adding clustering capabilities to FITSWebQL

so that many instances of it can run in parallel across a
supercomputing cluster. Then each FITSWebQL instance
would be responsible for handling only a small subset of a
very large FITS data cube. After a careful consideration we
have decided against using OpenMPI in favour of a custom
solution involving a mixture of UDP (an automatic node
discovery), HTTP and WebSockets10. The development
work is already under way.

4. FITSWebQL Personal Edition

Due to a popular demand since version 3 we have been
offering a standalone desktop edition of FITSWebQL. After
the installation (a rather time consuming process involving
compiling a lot of software) users can access their own FITS
files from a local web page — shown in the Figure 17 —
and view them through an exactly the same user interface
as FITSWebQL from the JVO Portal. Both the server and
local editions share the underlying code base; both clients
run in a web browser. The Personal Edition runs across three
major platforms: Linux, macOS and Windows 10 WSL.
Readers can access the source code on GitHub without any
restrictions at https://github.com/jvo203/fits_web_ql.

5. Final Remarks

The paper gives an overview of the two most recent
major FITSWebQL releases: version 3 coded in C/C++
and the Rust version 4. C/C++ offers the best overall
performance but it does so at the price of potential memory
bugs and data races that can be difficult and/or time-
consuming to debug, especially in a concurrent multi-
threaded environment. A C/C++ programmer always needs
to maintain a state of high concentration during work so
as to prevent introducing bugs. On the other hand, Rust
offers stability and performance with fewer bugs to start
with. Learning Rust can often teach a programmer to write
better, safer C/C++ and acquire better programming habits.
Overall the JVO experience with Rust has been positive
although the Rust compiler can be painful to work with
initially. Especially when learning Rust it is easy to “hit a
wall” and get stuck, keep searching for a suitable solution
for several days. On a positive note, Rust offers excellent

9 Another way is to use distributed computing and/or a clustered file system.
10 The final solution may change.

FITSWebQL: an interactive preview system for very large FITS data cubes 15

Figure 15: A representative optical dataset with stars and galaxies as viewed in SAOImage DS9 using its default linear colour scaling
function. Telescope: Subaru Prime Focus Camera

Figure 16: A representative optical dataset with stars and galaxies displayed using FITSWebQL. The tool automatically selected a ratio
tone mapping function and adjusted the noise sensitivity too. Telescope: Subaru Prime Focus Camera

C. Zapart, et al. 16

documentation and tutorials. We encourage interested
readers to consult the “Rust Book” available at

https://doc.rust-lang.org/stable/book/.
Looking forward to the next-generation FITSWebQL

capable of handling Terabyte-class FITS f iles, the
author has been split between using Rust on one hand
and returning to C/C++ on the other. On one hand the
current Rust FITSWebQL v4 continues to be updated
with new features (for example a recent integration of the
Intel Integrated Performance Primitives library, FPZIP
Lindstrom and Isenburg (2006) spectrum compression,
spectrum downsampling with Largest-Triangle-Three-
Buckets (LTTB) Steinarsson (2013), or cluster ing
capabilities under development). On the other hand for
some time the author has been developing an experimental
high-performance C/C++ FITSWebQL SE11 in order to
test various compression ideas. The readers can access its
incomplete source code at

https://github.com/jvo203/FITSWebQL.
The decision whether to stick with Rust or return to C/

C++ is not an easy one. From the developer’s point of view
the recently standardised 2017 C++ and its 2020 successor
offer attractive alternatives to Rust. Whilst reference

counted C++ smart pointers for automatic memory
tracking/release (std::shared_ ptr) have been available
since C++11, the more recent C++ standards also introduce
Parallel STL containers as well as coroutines (lightweight
threads). Especially the use of lambda functions passed
to the destructor argument of the std::shared_ ptr allows a
programmer to use flexible data structures at runtime, in
which the underlying pointer can either point to a RAM
region or to an mmapped disk file. C/C++ also benefits
from thread-safe lock-less data structures available in the
Boost library. A skillful and very careful use of a modern
C++ can result in memory-safe programs nearly on par
with Rust, all whilst taking advantage of the mature C/
C++ ecosystem. Indeed a major problem — a showstopper
for us — encountered whilst adding clustering capabilities
to the Rust version 4 of FITSWebQL has been incomplete
and/or unstable Rust bindings to message passing libraries
like ZeroMQ/czmq or nanomsg. Another issue is a
relative immaturity of the Rust ecosystem (this will likely
improve with time). A look at the Figure 10 reveals that
the application uses Rust mainly to handle the networking
part and for general memory housekeeping. All the vital
computationally intensive parts are in fact mainly handled
by external C/C++ libraries called from within Rust. At the
time of writing there were no pure Rust equivalents to these 11 “SE” stands for Supercomputer Edition.

Figure 17: FITSWebQL Personal Edition.

FITSWebQL: an interactive preview system for very large FITS data cubes 17

libraries. An inquisitive reader could therefore question
the point of using Rust: would it not be less troublesome to
call native C/C++ libraries from within C++ for an end-to-
end integrated native solution? Given the aforementioned
shortcomings of Rust in the area of message passing
between supercomputing cluster nodes, with a bit of a
“heavy heart” we have taken the decision to return to C/
C++ for the FITSWebQL Supercomputer Edition.

Acknowledgement

The authors would like to thank Vale T. Kobayashi for
his in-numerous suggestions and an eye for detail in finding
bugs, especially during the development phase of the prior
ALMA WebQL v2.

References

Allen, M. G., Baines, D., Bunn, S. E., Cui, C., Taylor,
M., Zolotukhin, I.: 2013, ALMA VO Service. IVOA
Newsletter .

Eguchi, S., Kawasaki, W., Shirasaki, Y., Komiya, Y.,
Kosugi, G., Ohishi, M., Mizumoto, Y.: 2013, Prototype
Implementation of Web and Desktop Applications for
ALMA Science Verification Data and the Lessons
Learned, in: Fr iedel, D.N. (Ed.), Ast ronomical
Data Analysis Software and Systems XXII, p. 255.
1211.3790.

Kalman, R. E.: 1960, A New Approach to Linear
Filtering and Prediction Problems, Journal of Fluids
Engineering, 82, 35–45.

Lindstrom, P.: 2014, Fixed-rate compressed f loating-
point arrays, IEEE Transactions on Visualization and
Computer Graphics, 20.

Lindstrom, P., Isenburg, M.: 2006, Fast and efficient
compression of floating point data. IEEE transactions
on visualization and computer graphics, 12, 1245–
1250.

Lovas, F. J.: 2009, Revision. NIST recommended rest
f requencies for observed interstellar molecular
microwave transitions.
https://dx.doi.org/10.18434/T4JP4Q

Maple, C.: 2003, Geometric design and space planning
using the marching squares and marching cube

algor ithms, Proceedings of 2003 Internat ional
Conference on Geometric Modeling and Graphics,
90–95.

Markwick-Kemper, A. J., Remijan, A. J., Fomalont, E.:
2006, The Splatalogue (Spectral Line Catalogue) and
Calibase (Calibration Source Database), in: American
Astronomical Society Meeting Abstracts #208, p. 130.

Murphy, K. P.: 2013. Machine learning: a probabilistic
perspective. MIT Press, Cambridge, Mass. [u.a.].

Steinarsson, S.: 2013, Downsampling time series for visual
representation.
https://github.com/sveinn-steinarsson/flot-downsample

Zapart, C., Shirasaki, Y., Ohishi, M., Mizumoto, Y.,
Kawasaki, W., Kobayashi, T., Kosugi, G., Eguchi, S.:
2019a, ALMAWebQL v2: a Modern Interactive Client-
server Architecture for Fast Previewing of Large
ALMA Datasets, in: Molinaro, M., Shortridge, K.,
Pasian, F. (Eds.), Astronomical Data Analysis Software
and Systems XXVI, p. 753.

Zapart, C., Shirasaki, Y., Ohishi, M., Mizumoto, Y.,
Kawasaki, W., Kobayashi, T., Kosugi, G., Morita,
E., Yoshino, A., Eguchi, S.: 2019b, An Introduction
to FITSWebQL, in: Teuben, P. J., Pound, M. W.,
Thomas, B. A., Warner, E. M. (Eds.), Astronomical
Data Analysis Software and Systems XXVIII, p. 13.
1812.05787.

