The Big bang nucleosynthesis theory accurately reproduces the abundances of light elements in the Universes, except for ^7Li abundance. Calculated ^7Li abundance with the baryon to photon ratio fixed by the observations of the cosmic microwave background (CMB) is inconsistent with the observed lithium abundances on the surface of metal-poor halo stars, and this problem is called "^7Li problem". Previous studies proposed to resolve this ^7Li problem include photon cooling (possibly via the Bose-Einstein condensation of a scalar particle), the decay of a long-lived X particle (possibly the next-to-lightest supersymmetric particle), or an energy density of a primordial magnetic field (PMF) [1,2].

We then used a maximum likelihood analysis to constrain the parameters of the X particle and the energy density of the PMF by the observed abundances of light elements up to Li (Fig. 1) [3].

As a result, we obtained allowed ranges for the X-particle parameters and find that the new hybrid model with a PMF gives the better likelihood than that without a PMF (Table 1) [3].

We discussed the degeneracy between the parameters of the X particle and the PMF. Since the X particle parameters are mainly limited by the D and ^7Li abundances, while the PMF energy density is mainly limited by the ^4He abundance, we found that the parameters of the PMF and the X particle have no significant degeneracies [3].

We also discussed the effective number of neutrino species N_{eff} with our new hybrid model. Since the constraint on N_{eff} from the CMB observations is different from the N_{eff} value in our hybrid model which is consistent with the observed light elements, it is difficult to directly compare these two N_{eff} values. We will report a new limit on N_{eff} derived by taking into account analyses of both BBN and the CMB simultaneously in our future work [3].

![Figure 1](image.png)

Figure 1: Allowed region in the (τ_X, ζ_X) plane by the observational constraints on the light element abundances for $\eta = 4.57 \times 10^{-10}$ and $B = 1.89 \mu G$. The curves denote the allowed regions derived from observational limits on the primordial elemental abundances. The narrow dark band and the region bounded by the solid curves (color version: blue and aqua regions) show the 2σ (95\%) confidence limits determined from the observed abundances of D and ^7Li, respectively. Dashed, dot-dashed and dotted curves (color version: purple, orange and black curves) are the 2σ (95\%) confidence limits determined from the upper limits on the ^3He, ^4He and ^6Li abundances.

Table 1: Agreement with observed light element abundances for the four models considered here.

<table>
<thead>
<tr>
<th>Model</th>
<th>γ-cooling</th>
<th>X</th>
<th>PMF</th>
<th>γ-cooling +X+PMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^3\text{He}/\text{H}$</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>$^4\text{He}/\text{H}$</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>$^7\text{Li}/\text{H}$</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
</tbody>
</table>

References