Evidence for Higher Black Hole Spin in Radio-loud Quasars

SCHULZE, Andreas¹, DONE, Chris², LU, Youjun^{3/4}, ZHANG, Fupeng⁵, INOUE, Yoshiyuki⁶

1: NAOJ, 2: University of Durham, 3: National Astronomical Observatories, Chinese Academy of Sciences, 4: University of Chinese Academy of Sciences, 5: Sun Yat-Sen University, 6: Institute of Space and Astronautical Science JAXA

One of the major unsolved questions on the understanding of the AGN population is the origin of the dichotomy between radio-quiet and radio-loud quasars, i.e. why does the majority of AGN feature only weak core radio emission, while about 10% of them have powerful relativistic jets with high bulk Lorentz factor. The most promising explanation is provided by the spin paradigm, which suggests radio-loud quasars have higher black hole spin. However, the measurement of black hole spin remains extremely challenging.

To address this question, we proposed a novel approach to probe the mean radiative efficiencies of both populations as direct tracers of black hole spin. For this goal, we used a large well-defined statistical quasar sample drawn from SDSS [1] at 0.3 < z < 0.8, separated into radio-loud and radio-quiet quasars. A radio loud quasar is here defined by their radio-to-optical flux density ratio R either above 10 (or above 80). We used the [OIII] luminosity as an indirect average tracer of the ionizing continuum in the extreme-UV regime where differences in the SED due to black hole spin are most pronounced. We found that the radio-loud sample shows an enhancement in [OIII] line strength by a factor of at least 1.5 compared to a radio-quiet sample matched in redshift, black hole mass and optical continuum luminosity L_{5100} or accretion rate (see Fig. 1).

We do not see evidence that the observed trend is driven by star formation or jet-driven outflows (see e.g. Fig. 2). A remaining uncertainty we cannot fully resolve given current observations lies in our assumption of similar average NLR structures between radio-loud and radio-quiet quasars. However, we find a similar enhancement in both narrow and broad high ionization lines (in particular broad HeII λ 4686) which suggests that our result is not driven by NLR physics.

We argue that the most plausible explanation for the observed [OIII] equivalent width enhancement is an intrinsic difference in ionizing continuum, thus in SED, meaning higher average bolometric luminosities at fixed accretion rate in the radio-loud population. This suggests that the radio-loud quasar population has on average systematically larger radiative efficiencies and therefore higher black hole spin than the radio-quiet population. Assuming a standard average radiative efficiency of 0.1 for radio-quiet quasars (a = 0.67), radio-loud quasars would have an efficiency of 0.15 and thus a = 0.89, which is high but not yet close to maximum spin.

Our results provide new observational support for the

black hole spin paradigm [2].

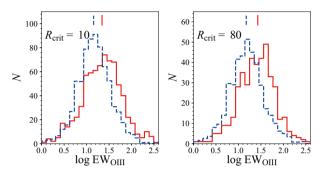


Figure 1: Histogram of [OIII] equivalent width for the radioloud quasar sample (solid red lines) and the matched radio-quiet sample (dashed blue lines), in the left panel for defining radio-loud quasars by a radio loudness parameter R > 10 and in the right panel using a more conservative threshold R > 80.

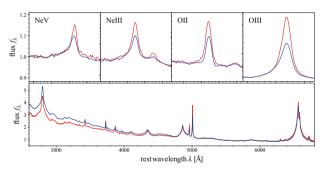


Figure 2: Composite spectra of the radio-loud (red) and matched radio-quiet (blue) quasar sample, where the composite spectra are normalized at 5100 Å, for the full spectrum (lower panel) and several prominent narrow highionization lines (upper panels).

References

Shen, Y., et al.: 2011, *ApJS*, **194**, 45.
Schulze, A., et al.: 2017, *ApJ*, **849**, 4.