Formation Mechanisms of Cyanopolyynes in Low-Mass Starless Cores

TANIGUCHI, Kotomi, SAITO, Masao (NAOJ)

Cyanopolyynes ($HC_{2n+1}N$; n=1, 2, 3, ...) are one of the representative carbon-chain species. Carbon-chain molecules tend to be abundant in low-mass starless cores and deficient in star-forming cores (e.g., [1]). It is important for understanding of the physical conditions and evolution in early low-mass starless cores to reveal formation mechanisms of carbon-chain molecules. However, the formation mechanisms of carbon-chain species are unclear due to shortage of laboratory experimental data.

One method to investigate formation pathways of carbon-chain molecules is ¹³C isotopic fractionation, i.e., differences in abundance among the ¹³C isotopologues. At the cyanopolyyne peak in Taurus Molecular Cloud-1 (TMC-1 CP), the ¹³C isotopic fractionation of HC₃N was derived to be [H¹³CCCN] : [HC¹³CCN] : [HCC¹³CN] = 1.0:1.0:1.4, and the neutral-neutral reaction of "C₂H₂ + CN" was proposed as the main formation pathway of HC₃N [2]. On the other hand, there is no clear difference in abundance among the five ¹³C isotopologues of HC₅N. From the results, the ion-molecule reactions of "C₅H⁺ + N" followed by the electron recombination reactions were proposed as the main formation mechanism of HC₅N at TMC-1 CP [3].

We carried out observations of the three ¹³C isotopologues of HC₃N toward two low-mass starless cores, L1521B and L134N, using the J=5-4 rotational lines in the 45 GHz band with the Z45 receiver installed on the Nobeyama 45-m radio telescope [4]. The abundance ratios of the three ¹³C isotopologues were derived to be [H¹³CCCN] : [HC¹³CCN] : [HCC¹³CN] $= 0.98 (\pm 0.14) : 1.00 : 1.52 (\pm 0.16)$ and $1.5 (\pm 0.2) : 1.0 :$ 2.1 (± 0.4) (1 σ) in L1521B and L134N, respectively. From the ¹³C isotopic fractionation patterns, the reactions of " C_2H_2 + CN" and "CCH + HNC" were proposed as the main formation pathways of HC₃N in L1521B and L134N, respectively. Figure 1 shows the summary of the main formation pathways of HC₃N in low-mass starless cores. Although these three sources have similar physical conditions ($T \sim 10$ K, $n \sim 10^4 - 10^5$ cm⁻³), the proposed main formation pathway in L134N is different from those in L1521B and TMC-1. We conducted a chemical network simulation and found that the CN/ HNC abundance ratio may be a key factor to produce the difference in the main formation mechanism of HC₃N among the three cold molecular clouds.

We reported the first detection of $HC_5^{15}N$ using the J=9-8 rotational line in the 20 GHz band from TMC-

$[H^{13}CCCN] : [HC^{13}CCN] : [HCC^{13}CN]$

Figure 1: Possible formation mechanisms of HC_3N and the proposed main formation pathways in three cold molecular clouds. Expected ¹³C isotopic fractionation patterns for each mechanism are shown in red font (discussed in [4] in detail).

1 CP with the Nobeyama 45-m radio telescope [5]. Its column density was derived to be $(1.9 \pm 0.5) \times 10^{11} \text{ cm}^{-2}$ (1 σ). Applying the double isotope method, the ¹⁴N/¹⁵N ratio of HC₅N was calculated at 344 ± 53 . Using the previous data taken from [6] and [2], we estimated the 14 N/ 15 N ratio of HC₃N at 257 ± 54, which is lower than that of HC₅N. The difference in the $^{14}N/^{15}N$ ratio between HC₅N and HC₃N is considered to be produced during their formation. Since there are possible mechanisms that ¹⁵N concentrates into CN in cold gas, the lower ratio of HC₃N implies that the main formation pathway involves CN. The higher ¹⁴N/¹⁵N ratio of HC₅N suggests that the main formation mechanism involves nitrogen atoms, because the ¹⁴N/¹⁵N ratio in the local interstellar medium is ~440. In summary, the suggested main formation mechanisms from ¹⁵N isotopic fractionation are consistent with those suggested from ¹³C isotopic fractionation [2,3].

References

- [1] Suzuki, H., et al.: 1992, ApJ, 392, 551.
- [2] Takano, S., et al.: 1998, A&A, 329, 1156.
- [3] Taniguchi, K., et al.: 2016, ApJ, 817, 147.
- [4] Taniguchi, K., et al.: 2017, ApJ, 846, 46.
- [5] Taniguchi, K., Saito, M.: 2017, PASJ, 69, L7.
- [6] Kaifu, N., et al.: 2004, PASJ, 56, 69.