Lya Rate of UV-bright Star-forming Galaxies at Redshift 7

FURUSAWA, Hisanori¹, KASHIKAWA, Nobunari^{2/1}, KOBAYASHI, Masakazu R. A.³, DUNLOP, James S.⁴ SHIMASAKU, Kazuhiro⁵, TAKATA, Tadafumi^{2/1}, SEKIGUCHI, Kazuhiro^{2/1}, NAITO, Yoshiaki⁵ FURUSAWA, Junko¹, OUCHI, Masami⁵, NAKATA, Fumiaki¹, YASUDA, Naoki⁵, OKURA, Yuki⁶ TANIGUCHI, Yoshiaki⁷, YAMADA, Toru⁸, KAJISAWA, Masaru⁹, FYNBO, Johan P. U.¹⁰, Le FÈVRE, Olivier¹¹

1: NAOJ, 2: Graduate University for Advanced Studies, 3: National Institute of Technology, Kure College, 4: Edinburgh University, 5: University of Tokyo, 6: Riken, 7: The Open University of Japan, 8: ISAS, 9: Ehime University, 10: Copenhagen University, 11: LAM

We perform a survey of star-formaing galaxies that are very bright in UV luminosities at redshift 7. Followup spectroscopy on these high-z galaxies is conducted, determining rest-frame equivalent widths (EW₀s) of the Ly α emissions, and the Ly α rate, which is a franction of star-formation galaxies showing strong Ly α emission of these galaxies [1]. Recent observational studies have revealed that the number density of bright star-formation galaxies may be larger than expected in previous observations. Also, the very bright galaxies may include metal-poor galaxies comprising a primordial stellar population [2]. It is crucial to increase the sample volume of such bright galaxies to discuss galaxy formation at this epoch.

We select star-forming galaxies (LBGs) using the public near-infrared (NIR) data set by UKIRT-UKIDSS and VISTA-UltraVISTA(J=25.5; 5σ) covering 1.65 square degrees. In order to apply z-dropout search, we conduct very deep z'-band imaging ($z \sim$ 26.5; 5σ) with Subaru/Suprime-Cam. This data set enables us to investigate the very-bright LBGs at z=7 with quite a low number density. We find 18 candidates of very bright galaxies ($M_{\rm UV} < -21.75$). An optical follow-up spectroscopy was performed with Subaru/FOCAS on 9 candidates, in which a galaxy shows possible Ly α emission at z = 7.168 at S/N = 5.5 with EW₀ = 3.7 Å (Fig. 1). The other candidates show no significant emission lines (EW₀ < 10 Å).

Previous studies have suggested that the Ly α rate increases from z = 4 to z = 6. The Ly α rate is higher and more rapidly increases towards high redshifts for fainter star-forming galaxies. For galaxies with $M_{\rm UV} >$ -21.75, the Ly α rate may stop increasing and possibly decrease from z = 6 to $z \sim 7$ [3]. Our study for the first time discusses the Ly α rate (EW₀ > 50 or 55) for the very bright galaxies (-23 < $M_{\rm UV}$ < -21.75) (Fig. 2), deriving the following results: (1) An increase of the Ly α rate of the very-bright galaxies may level off at z = 7 and may be close to or lower than that at z = 4-6. (2) The Ly α rate of the very-bright galaxies at z = 7 may be at the same level or higher than that for fainter galaxies ($M_{\rm UV} > -21.75$) at the same redshifts.

The very-bright galaxies are also important components to discuss cosmic reionization. The EW_0 distribution of our very-bright galaxy sample implies

high neutral hydrogen rate at z = 7. An increase of a sample volume of the very-bright galaxies at this epoch is desiable to statistaically understand formation and evolution history and roles of this very bright population in the reionization.

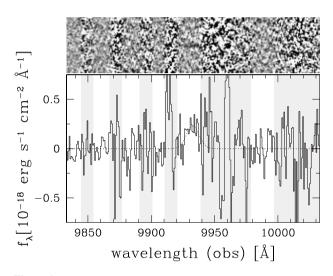


Figure 1: Spectrum of a Ly α emitter at z = 7.168.

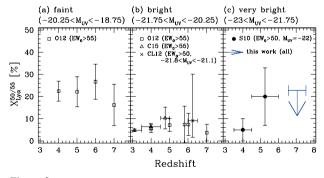


Figure 2: Evolution of Lya rate in different magnitude ranges.

References

- [1] Furusawa, H., et al.: 2016, ApJ, 822, 46.
- [2] Sobral, D., et al.: 2015, ApJ, 808, 139.
- [3] Ono, Y., et al.: 2012, ApJ, 744, 83.