A Strong Interaction between The Ejecta of SN IIb 2013df and The CSM

MAEDA, Keiichi^{1/2}, HATTORI, Takashi³, MILISAVLJEVIC, Dan⁴, FOLATELLI, Gaston^{2/5}, DROUT, Maria R.⁴

KUNCARAYAKTI, Hanin⁶, MARGUTTI, Raffaella⁴, KAMBLE, Atish⁴, SODERBERG, Alicia⁴

TANAKA, Masaomi³, KAWABATA, Miho⁷, KAWABATA, Koji⁷, YAMANAKA, Masayuki^{1/8}, Nomoto, Ken'ichi²

KIM, Ji Hoon³, SIMON, Joshua D.⁹, PHILLIPS, Mark M.⁹, PARRENT, Jerod⁴, NAKAOKA, Tatsuya⁷

MORIYA, Takashi¹⁰, SUZUKI, Akihiro¹, TAKAKI, Katsutoshi⁷, ISHIGAKI, Miho², SAKON, Itsuki²

TAJITSU, Akihito³, IYE, Masanori³

1: Kyoto University, 2: The University of Tokyo, 3: NAOJ, 4: Harvard-Smithsonian Center for Astrophysics, 5: Instituto de Astrofísica de La Plata, 6: Universidad de Chile, 7: Hiroshima University, 8: Konan University, 9: Carnegie Observatories, 10: University of Bonn

Type IIp supernovae are believed to be an explosion of a red supergiant, while type Ib/c supernovae (SNe Ib/ c) are an outcome of an explosion of a star which has lost most of the hydrogen envelope before the explosion. They should represent different evolutionary paths, and thus a unified understanding of these phenomena is key to clarifying the unresolved nature of massive stellar evolution in the final centuries. SNe IIb retain a small but non-negligible amount of the hydrogen envelope at the time of the explosion, about the Solar mass or less, and thus they represent a link between SNe IIp and Ib/ c. Their progenitors have diverse properties from a blue supergiant to a red supergiant, which are difficult to understand in the standard stellar evolution theory [1,2].

We have performed follow-up observations of SN IIb 2013df [3]. Especially surprising was a spectral feature at ~600 days after the explosion, obtained through the Subaru/FOCAS. At ~200 days, SN 2013df showed a spectrum similar to other SNe, characterized by forbidden lines of heavy elements. However, at ~600 days the spectrum showed a dramatic change, showing a strong H α emission (Fig. 1). This transition is interpreted as follows: early on the SN was powered by radioactive decays of ⁵⁶Co, while later on the interaction between the

Figure 1: Late time spectra of SN 2013df as compared to those of SNe IIb 1993J and 2011dh at similar epochs [3].

expanding SN ejecta and circumstellar materials (CSM) became a dominant energy source. Such a transition has never been seen previously except for SN IIb 1993J.

This observational finding indicates that at least a fraction of SNe IIb have a large amount of CSM, namely they experience a huge mass loss in the last ~1000 years. On the other hand, for other SNe IIb the ejecta-CSM interaction have never been observed (Fig. 1) [4]. We have discovered that there is a relation between the mass loss rate and the radius of the progenitor (Fig. 2). A more extended progenitor is associated with a larger mass loss rate just before the explosion. It seems that SNe IIb from a more extended progenitor are the explosions during a strong binary interaction phase, while those from a less extended progenitor have a delay between the binary interaction and the explosion. A confirmation of the idea will require further studies, but in any case our discovery places a new and strong constraint on the unresolved nature of the final evolution of massive stars.

Figure 2: A relation between the progenitor radius and the CSM density (i.e., the mass loss rate) [3].

References

- [1] Van Dyk, S. D., et al.: 2014, AJ, 147, 37.
- [2] Folatelli, G., et al.: 2015, ApJ, 811, 147.
- [3] Maeda, K., et al.: 2015, ApJ, 807, 35.
- [4] Maeda, K., et al.: 2014, ApJ, 785, 95.