Optical–Infrared Properties of Faint 1.3 mm Sources Detected with ALMA

HATSUKADE, Bunyo (NAOJ) OHTA, Kouji (Kyoto University) YABE, Kiyoto (Kavli IPMU)

SEKO, Akifumi (Kyoto University) MAKIYA, Ryu (Kavli IPMU) AKIYAMA, Masayuki (Tohoku University)

Since the fraction of dust-obscured star formation to the total star formation increases with redshift, observations at infrared (IR) to millimeter/submillimeter (mm/submm) wavelengths are essential to understand the cosmic star formation history and the galaxy evolution. Deep and wide-field surveys uncovered a new population of mm/submm-bright galaxies at high redshifts (SMGs). SMGs are highly obscured by dust. and the resulting thermal dust emission dominates the bolometric luminosity. The energy source of mm/submm emission is primarily from intense star formation activity, with star-formation rates (SFRs) of $10^2-10^3 M_{\odot} \text{ yr}^{-1}$. The heavy dust obscuration in SMGs makes it difficult to understand their optical/near-infrared (NIR) properties. In addition, the coarse angular resolution of single dish telescopes (>15") prevents from identifying optical/ NIR counterparts. The advent of ALMA has changed this situation thanks to its high sensitivity and high angular resolution.

We studied optical-IR properties of faint 1.3~mm sources ($S_{1.3 \text{ mm}} = 0.2 - 1.0 \text{ mJy}$) detected with ALMA in the Subaru/XMM-Newton Deep Survey (SXDS) field [1]. We conducted ALMA band 6 observations toward 20 star-forming galaxies at $z \sim 1.4$ [2,3]. The targets were extracted from a stellar mass limit (> $10^{9.5} M_{\odot}$) sample whose redshifts and H α SFR were obtained by NIR spectroscopy. We detected 8 sources at $SN \ge 4.0$, of which three sources are the original targets of ALMA observations and five sources are serendipitously-detected sources. We searched for optical/IR counterparts of the 8 ALMA-detected sources in a K-band source catalog. Four ALMA sources have K-band counterpart candidates within a 0.4" radius. Comparison between ALMAdetected and undetected K-band sources in the same observing fields shows that ALMA-detected sources tend to be brighter, more massive, and more actively forming stars. While many of the ALMA-identified SMGs in previous studies lie above the sequence of star-forming galaxies (main sequence) in stellar mass-SFR plane, our ALMA sources are located in the sequence (Figure 1), suggesting that the ALMA-detected faint sources are more like 'normal' star-forming galaxies rather than 'classical' SMGs.

We found a region where multiple ALMA sources and *K*-band sources reside in a narrow photometric redshift range ($z \sim 1.3-1.6$) within a radius of 5" (42 kpc if we assume z = 1.45). This is possibly a pre-merging system

Figure 1: Comparison of stellar mass and SFR for the ALMA sources identified with the original targets (circles), the ALMA serendipitous source (square), ALMA-identified SMGs in previous studies (crosses), and the *K*-band sources (dots).

Figure 2: Multi-wavelength images around the multiple ALMA sources (ALMA 1.3 mm, B, K_s , 3.6 μ m, and 24 μ m). The dashed circle shows a region within a radius of 5".

and we may be witnessing the early phase of formation of a massive elliptical galaxy (Figure 2).

References

- [1] Hatsukade, B., Ohta, K., Yabe, K., et al.: 2015, ApJ, 810, 91.
- [2] Hatsukade, B., et al.: 2013, ApJ, 769, L27.
- [3] Seko, A., Ohta, K., Yabe, K., et al.: 2016, ApJ, 819, 82.