Supernova Nucleosynthesis of ²⁶Al and Nuclear Structure of ²⁶Si [1]

MORIGUCHI, T.

(NCCCRI)

KOMATSUBARA, T. (Institute for Basic Science) KUBONO, S. (RIKEN) HAYAKAWA, T., SHIZUMA, T. (JAEA)

OZAWA, A., ITO, Y., ISHIBASHI, Y. (University of Tsukuba)

> HAYAKAWA, S. (INFN, Catania)

BINH, Dam Nguyen (Vietnamese Academy for Science and Technology) CHEN, A. A., CHEN, J. (McMaster University)

YAMAGUCHI, H., KAHL, D.

(CNS)

SETOODEHNIA, K. (University of Notre Dame) KAJINO, T. (NAOJ/University of Tokyo)

The level scheme above the proton threshold in ²⁶Si is crucial for evaluating the ²⁵Al(p, γ)²⁶Si stellar reaction, which is important for understanding the astrophysical origin of the long-lived cosmic radioactivity ²⁶Al (T_{1/2} = 7.17×10⁵ y) in the Galaxy. The β -delayed γ -ray from the ²⁶Al was measured by satellite γ -ray telescope. Therefore, the ²⁶Al is considered to be created in supernovae, classical novae, and massive stars. Because the half-life of this isotope is much shorter than the age of the Galaxy, it has been continuously created reached equilibrium value.

The isotope ²⁶Al is produced the nucleosynthesis flow of ²⁵Al(e^+v)²⁵Mg(p, γ)²⁶Al. There is a bypass flow ²⁵Al(p, γ)²⁶Si(e^+v)^{26m}Al(e^+v)²⁶Mg, that does not emit the characteristic γ -ray. Therefore, the ²⁵Al(p, γ)²⁶Si reaction is a key reaction to evaluate the production of the ²⁶Al. The reaction rate of the (p, γ) reaction is dominated by narrow-resonant reactions with 0⁺, 1⁺, and 3⁺ states. Those are sensitive to their excitation energies above the proton threshold in ²⁶Si.

The excited states in ²⁶Si have been studied using an in-beam γ -ray spectroscopy technique with the ²⁴Mg(³He, $n\gamma$)²⁶Si reaction. γ -rays emitted from excited states in ²⁶Si have been measured using large volume HPGe detectors. As the result of the experiments the level scheme of ²⁶Si is shown in Figure 1. The 0⁺ and 1⁺ states were well observed above the proton threshold. The spinparity of one of the most important states at 5890.0keV has been assigned as 0⁺ by $\gamma - \gamma$ angular correlation measurements in this work.

According to the newly determined excitation energies the astrophysical nuclear reaction rate is calculated as a function of temperature T_9 as shown in Figure 2. The contribution of the 0⁺ resonance is modestly increased; however, the role of the 3⁺ level is still dominant as discussion [2]. In order to elucidate the abundance of galactic ²⁶Al more extensive effort might be essential to observe the crucial 3⁺ state just above the proton threshold.

References

- [1] Komatsubara, T., et al.: 2014, Euro. Phys. Jour. A, 50, 136.
- [2] Parikh, A., José, J.: 2013, Phys. Rev. C, 88, 048801.

Figure 1: Level scheme of ²⁶Si. The 0⁺ level at 5890 keV above the proton threshold has been observed with present work.

Figure 2: Astrophysical reaction rate $N_A < \sigma v >$ for the ²⁵Al(p, γ)²⁶Si reaction. Resonance reactions through 0⁺, 1⁺, and 3⁺ are shown as well as the direct component DC. Contribution by the 3⁺ is dominant at high temperature.