In-medium Effects on Neutrino Reactions inside the Neutron Star

Cheoun, M-.K. (Soongsil University)

Kim, K. S. (Korea Aviation University)

Saito, K. (Tokyo University of Science)

Kajino, T.

Tsushima, K.

Maruyama, T.

(NAOJ/University of Tokyo)

(Federal University of Rio Grande do Norte (UFRN))

(Nihon University)

The nucleon form factors in free space are usually thought to be modified when a nucleon is bound in a nucleus or immersed in a nuclear medium. We investigated effects of the density-dependent axial and weak vector form factors on the electro-neutrino (v_e) and antielectro-neutrino (\bar{v}_e) reactions with incident energy E_v < 80 MeV via neutral current (NC) and charged current (CC) for a nucleon in a nuclear medium or ${}^{12}C$. For the density-dependent form factors, we exploited the quark meson-coupling (QMC) model.

In CC reaction, about 5% decrease of the v_e reaction cross section on the nucleon is shown to be occurred in normal density, $\rho = \rho_o \sim 0.15 \, fm^{-3}$ (see Fig. 1 (left)), and also about 5% reduction of total v_e cross section on ¹²C is obtained by the modification of the weak form factors for bound nucleons (Fig. 2 (left)). Density effects for both cases are relatively small, but they are as large as the effect by the Coulomb distortion of outgoing leptons in the v-reaction. However, density effects in the \bar{v}_e reaction reduced significantly about 30% the cross sections for both the nucleon and ${}^{12}C$ cases [1].

For NC, about 12% decrease of the total cross section by the v_e reaction on the nucleon is obtained at normal density, $\rho = \rho_o \sim 0.15 \, fm^{-3}$ (Fig. 1 (right)), as well as about 18% reduction of the total v_e cross section on ¹²C (Fig. 2 (right)), by the modification of the weak form factors of the bound nucleon.

However, similarly to the CC reaction, effects of the nucleon property change in the \bar{v}_e reaction and reduce significantly the cross sections about 30% for the nucleon in matter and ¹²C cases. In Refs. [1,2], we addressed that such a large asymmetry in the \bar{v}_e cross sections in both reactions is originated from the different helicities of \bar{v}_e and v_e .

We have applied the QRPA formalism to ${}^{12}C(v_e,$ e^{-})¹²N_{g,s.}(1⁺) via CC and ¹²C(v_e, v'_e)¹²C*(1⁺) via NC. The reaction can be treated by the $\Delta J = 1$ transition from the 0^+ ground state of ${}^{12}C$ to the 1^+ ground state of ${}^{12}N$ and ¹²B. Descriptions of the nuclear states are performed by the QRPA framework [3]. Recent neutrino facilities present lots of fruitful data for the neutrino reaction in the quasi-elastic region. The study of the asymmetry between the \overline{v} and v scattering by more data could be the valuable alternative approach to understand the modification of the nucleon properties in a nuclear medium.

Figure 1: Density dependence of total cross sections for $v_e + n$ $\rightarrow e^- + p$ (left) and $v_e + n \rightarrow v'_e + n$ (right) reactions in nuclear matter. Cross sections are decreased with the increase of the density by $\rho/\rho_o = 0$ (black (solid)) $\rho/\rho_0 = 0.5$ (red (dashed)), 1.0 (blue (dotted)), 2.0 (vellow (short dotted)) and 2.5 (sky-blue (dot-dashed)) in both reactions.

Figure 2: Density dependence in ${}^{12}C(v_e, e^-){}^{12}N_{g.s.}(1^+)$ (left) and ${}^{12}C(v_e, v'_e){}^{12}C^*(1^+)$ (right) reactions. Uppermost (black (solid)) curve ($\rho = 0$) in right panel is the same result as the results by the 1^+ transition as the Fig. 1 in Ref. [3], which neatly reproduced the energy-dependent cross section data [4]. Cross sections are decreased similarly to the nucleon case in Fig. 1.

References

- [1] Cheoun, M.-K., et al.: 2013, Phys. Lett. B, 723, 464.
- [2] Cheoun, M.-K., et al.: 2013, Phys. Rev. C, 87, 065502.
- [3] Cheoun, M.-K., et al.: 2010, Phys. Rev. C, 81, 028501.
- [4] Athanassopoulos, C., et al.: 1997, Phys. Rev. C, 55, 2078.