⁷Be Charge Exchange between ⁷Be³⁺ Ion and **Exotic Long-lived Negatively Charged Massive Particle** in Big Bang Nucleosynthesis

KUSAKABE, Motohiko (Korea Aerospace University/Soongsil University)

KIM. K. S. (Korea Aerospace University)

CHEOUN, Myung-Ki (Soongsil University)

KAJINO, Toshitaka

(NAOJ/University of Tokyo)

KINO, Yasushi (Tohoku University)

A serious problem in big bang nucleosynthesis (BBN) is a discrepancy between primordial ⁷Li abundance predicted in standard BBN (SBBN) model and those inferred from observations of metal-poor stars [1,2]. In SBBN, ⁷Li is produced mostly as ⁷Be, which transforms into ⁷Li by electron capture in a late epoch. A ⁷Be destruction can be caused by negatively charged massive particles X⁻ [3] with a large mass, $m_X \gg 1$ GeV, in BBN [4,5,6]. The X^- particles become bound to positively charged nuclides A, and form bound states A_X . ⁷Be destruction proceeds via the recombination of ⁷Be with X^{-} followed by ${}^{7}\text{Be}_{X} + p \rightarrow {}^{8}\text{B}_{X} + \gamma$ through both atomic [4] and nuclear [5] excited states of ${}^{8}B_{\chi}$. In previous studies, only the radiative recombination of nuclides A and X^{-} [7] has been investigated. We, however, found that the nonradiative charge exchange reaction between $^{7}\text{Be}^{3+}$ and X^{-} contribute to the $^{7}\text{Be}_{X}$ formation and the subsequent destruction.

The destruction of ${}^{7}\text{Be}_{X}$ occurs at the temperature $T_9 \equiv T/(10^9 \text{ K}) \sim 0.4$ [6]. The effective rate of ⁷Be recombination with X^- through the ⁷Be³⁺ ion is given by the product of the following three quantities: 1) the number ratio of ${}^{7}\text{Be}{}^{3+}$ to ${}^{7}\text{Be}{}^{4+}(={}^{7}\text{Be})$. 2) the formation rate of excited states ${}^{7}\text{Be}_{X}^{*}$ via the reaction ${}^{7}\text{Be}{}^{3+} + X^{-} \rightarrow$ ${}^{7}\text{Be}_{X}^{*} + e^{-}$, and 3) the probability that produced ${}^{7}\text{Be}_{X}^{*}$ are converted to the ground state (GS), which is estimated by the ratio of the transition rate to the GS $^{7}\text{Be}_{X}$ and the total reaction rate of the $^7\text{Be}_X^*$.

The rate for ⁷Be to recombine with e^- is much larger than the Hubble expansion rate. The number ratio of ${}^{7}\text{Be}^{3+}$ to ${}^{7}\text{Be}^{4+}$ is then the equilibrium value via the efficient reaction ${}^{7}\text{Be}^{4+} + e^{-} \rightleftharpoons {}^{7}\text{Be}^{3+} + \gamma$.

We estimated the thermal reaction rate of the charge transfer reaction ${}^{7}\text{Be}{}^{3+} + X^{-} \rightarrow {}^{7}\text{Be}{}^{*}_{X} + e^{-}$. We assume that the cross section roughly scales as the squared Bohr radius of ⁷Be³⁺. Excited states ⁷Be^{*}_X produced via the reaction experience bound-bound transitions of the spontaneous and stimulated emissions and the photo-absorption in the universe filled with the cosmic background radiation (CBR). These are the GS formation reactions.

The ⁷Be^{*}_X is destroyed via the following reactions: 1) collisional ionization by e^{\pm} , ${}^{7}\text{Be}_{X}^{*} + e^{\pm} \rightarrow {}^{7}\text{Be} + X^{-} + e^{\pm}$, 2) the charge exchange reaction, ${}^{7}\text{Be}_{X}^{*} + e^{-} \rightarrow {}^{7}\text{Be}^{3+} + X^{-}$, and 3) photoionization of ${}^{7}\text{Be}_{X}^{*}$ by CBR. Reaction 1) is important while 2) and 3) are not.

Figure 1 shows a result of BBN calculation [8]. The effective recombination rates are derived as a function of temperature, and used in this calculation. Depending on the cross sections, abundance evolutions and the final abundances of ⁷Be and ⁷Be_X is affected by the recombination of ⁷Be with X^- through the ⁷Be³⁺ ion.

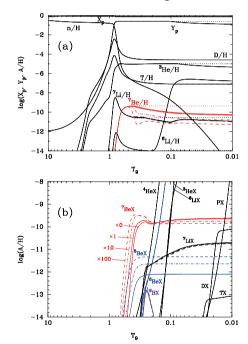


Figure 1: Abundances of normal nuclei (a) and X nuclei (b) as a function of T_9 . X_p and Y_p are mass fractions of ¹H and ⁴He, respectively, while other lines correspond to number abundances relative to that of ¹H. Thick lines correspond to the standard reaction rate for $^{7}\text{Be}(e^{-},$ γ)⁷Be³⁺(X⁻, e⁻)⁷Be_X, while thin solid, thick dot-dashed and dashed lines correspond to the cross sections of ${}^{7}\text{Be}^{3+}(X^{-}, e^{-}){}^{7}\text{Be}_{X}^{*}$ multiplied by a factor of 0, 10 and 100, respectively. The dotted lines correspond to SBBN. This is reprinted from [8].

References

- [1] Spite, F., Spite, M.: 1982, A&A, 115, 357.
- [2] Aoki, W., et al.: 2009, ApJ, 698, 1803.
- [3] Cahn, R. N., Glashow, S. L.: 1981, Science, 213, 607.
- [4] Bird, C., et al.: 2008, Phys. Rev. D, 78, 083010.
- [5] Kusakabe, M., et al.: 2007, Phys. Rev. D, 76, 121302.
- [6] Kusakabe, M., et al.: 2008, ApJ, 680, 846.
- [7] Dimopoulos, S., et al.: 1990, Phys. Rev. D, 41, 2388.
- [8] Kusakabe, M., et al.: 2013, Phys. Rev. D, 88, 063514.