Solution to Big-Bang Nucleosynthesis in Hybrid Axion Dark Matter Model

KUSAKABE, Motohiko (University of Tokyo)

KAJINO, Toshitaka (NAOJ/University of Tokyo)

The primordial ⁷Li abundance predicted in standard big bang nucleosynthesis (BBN) model for the baryonto-photon number ratio η determined from the cosmic microwave background observations is significantly more than those observed in old halo stars [1,2]. Recently a new solution to the lithium puzzle was proposed, which is a mechanism for the cooling of photons in the epoch between the end of BBN and the last photon scattering. An axion, one of candidates for the dark matter could form a Bose-Einstein condensate (BEC) and may have cooled the photons in the epoch [3]. The baryon-tophoton ratio would then be smaller in BBN epoch ($\eta =$ 4.6×10^{-10} [3]) than that measured by WMAP ($\eta = 6.2 \times$ 10^{-10} [4]). In the cooling model, however, the deuterium (D) abundance and the effective number of neutrinos are too high although the ⁷Li abundance agrees with observations.

Nonthermal photons can be generated through electromagnetic energy injections by the radiative decay of long-lived particles after the BBN epoch. Long-lived particles are motivated by particle physics beyond the standard model. These nonthermal photons can photodisintegrate background light elements. Effects of energy injection depend on two parameters. One is $\zeta_X = (n_X^0/n_Y^0)E_{\gamma 0}$ where (n_X^0/n_γ^0) is the number ratio of the decaying particle X and the background radiation before the decay of X, and $E_{\gamma 0}$ is the energy of photon emitted at the radiative decay. The other is τ_{X_2} the lifetime of X.

We calculated BBN in a hybrid axion and decaying exotic relic particle model in which the axion cools the photons and the particle produces nonthermal photons to eliminate the high D abundance in the original axion BEC model. We compared results with observational constraints on primordial nuclear abundances.

We also utilize a limit on the sum of primordial abundances of D and ³He taken from an observational abundance for the protosolar cloud, i.e., $(D+{}^{3}He)/H=(3.6 \pm 0.5)\times 10^{-5}$ [5]. This abundance can be regarded as constant at least within the standard cosmology since it is not affected by stellar activities significantly despite an effect of D burning into ³He via ²H(p, γ)³He would exist [6]. We thus showed that the constraint on $(D+{}^{3}He)/H$ abundance excludes the original axion BEC model.

We found a narrow parameter region in which calculated abundances of all nuclides including D and ⁷Li are simultaneously in ranges of adopted observational constraints. We conclude that the present model eliminates the main drawback of the original axion BEC BALANTEKIN, A. B. (University of Wisconsin, Madison/NAOJ)

PEHLIVAN, Y. (Mimar Sinan Fine Arts University/NAOJ)

model by reducing primordial D abundance via ${}^{2}\text{H}(\gamma, n)^{1}\text{H}$ reaction, where γ 's are nonthermal photons. We note that the decaying *X* particle model with the WMAP η value cannot resolve the ⁷Li problem by itself [7].

Figure 1 shows a result of a BBN calculation in our hybrid model [8]. The small difference at $T_9 \gtrsim 0.06$ observed between solid and dashed lines is caused by difference between initial η values. At $0.06 \gtrsim T_9 \gtrsim 7 \times 10^{-3}$, effects of ${}^{2}\text{H}(\gamma, n){}^{1}\text{H}$ are seen in the decrease of D and the increase of *n* abundances. We find a slight decrease in ⁷Be abundance caused through reactions ${}^{7}\text{Be}(\gamma, {}^{3}\text{He}){}^{4}\text{He}$, ${}^{7}\text{Be}(\gamma, p){}^{6}\text{Li}$, and ${}^{7}\text{Be}(\gamma, 2pn){}^{4}\text{He}$. The second reaction increases the ${}^{6}\text{Li}$ abundance. Finally, at $T_9 \lesssim 7 \times 10^{-3}$, when the abundance of long-lived *X* particle is already less than 3 % of the initial abundance, effect of ${}^{4}\text{He}$ photodisintegration is to increase ${}^{3}\text{H}$ and *n* abundances.

Figure 1: Mass fractions of H and ⁴He (X_p and Y_p , respectively) and number ratios of other nuclides relative to H as a function of $T_9 \equiv T/(10^9 \text{ K})$. Solid lines show the abundances in the hybrid model with the parameters $(\tau_X, \zeta_X) = (10^6 \text{ s}, 2 \times 10^{-10} \text{ GeV})$ which predict primordial abundances consistent with all observations. The dashed lines show the standard BBN prediction. This is reprinted from [8].

Reference

- [1] Spite, F., Spite, M.: 1982, A&A, 115, 357.
- [2] Aoki, W., et al.: 2009, *ApJ*, **698**, 1803.
- [3] Erken, O., et al.: 2012, Phys. Rev. Lett., 108, 061304.
- [4] Larson, D., et al.: 2011, ApJS, 192, 16.
- [5] Geiss, J, Gloeckler, G.: 1998, Space Sci. Rev., 84, 239.
- [6] Steigman, G., Tosi, M.: 1995, ApJ, 453, 173.
- [7] Kusakabe, M., et al.: 2006, Phys. Rev. D, 74, 023526.
- [8] Kusakabe, M., et al.: 2013, Phys. Lett. B, 718, 704.