Oscillation Phenomena in the Disk around the Massive Black Hole Sagittarius A*

MIYOSHI, Makoto (NAOJ) SHEN, Zhi-Qiang (SHAO)

OYAMA, Tomoaki (NAOJ)

TAKAHASHI, Rohta (TNCT) KATO, Yoshiaki (NAOJ)

The existence of black holes has been definitely established while zooming-in the relativistic region is still in difficulty though promising in near future. Sagittarius A* (Sgr A*), the most convincing massive black hole at the Galactic center, shows short time flares with quasiperiodic oscillations (QPO) with P = 17, 22, & 33 min in near-infrared and X-ray regions originated from near the central black hole.

Here we report the detection of radio QPOs with structure changes using the Very Long Baseline Array (VLBA) at 43 GHz [1]. We found conspicuous patterned changes of the structure with P = 16.8, 22.2, 31.4, &56.4 min, roughly in a 3 : 4 : 6 : 10 ratio. The first two periods show a rotating one-arm structure, while the P = 31.4 min shows a rotating 3-arm structure, as if viewed edgeon. At the central 50 μ as the P = 56.4 min period shows a double amplitude variation of those in its surroundings. Spatial distributions of the oscillation periods indicate that the disk of Sgr A* is presumably almost edge-on, rotating around an axis with $PA = -10^{\circ}$. The observed VLBI images of Sgr A* remain several features of the black hole accretion disk of Sgr A* in spite of being obscured and broadened by scattering of surrounding plasma.

If the OPOs originate in a strong gravity field where the relativistic effect plays an important role, the periods of QPOs should depend on the mass and the spin of a massive black hole. Recent theories of disk seismology predict that peak frequencies of QPOs can be scaled by a mass of central black holes as an analogy to QPOs in black hole X-ray binaries (BXB). For example, in GRO J1655-40, a peak frequency of high frequency QPOs is about $3 \times 10^2 (6.0-6.6 M_{\odot}/M_{BH})$ Hz (where M_{\odot} is a solar mass), with the result that a corresponding peak frequency using the mass of Sgr A* derived from the orbital motions of surrounding stars $(3.6 \pm 0.3 \times 10^6 M_{\odot})$ is about 5.1×10^{-4} Hz (P = 32 min), which is one of our findings. Detailed analysis with the obtained four QPO periods and wave-warp resonant oscillation model predicts the spin of Sgr A* to be 0.44 ± 0.08 and the black hole mass to be $(4.2 \pm 0.4) \times 10^6 M_{\odot}$ [2].

Figure 1: The slit-modulation-imaging (SMI) [3] maps with the 4 periods P = 16.8(a), 22.2(b), 31.4(c), and 56.4 min (d). The 8 maps show the images in phase frame series with respective periods. The white filled circles mark the intensity peak position in each map. In P = 31.4 & 56.4 min, second peaks are also marked with circles. Total amplitudes of respective periods are 22 mJy (P = 16.8 min), 24 mJy (P = 22.2 min), 24 mJy (P = 31.4 min), and 20 mJy (P = 56.4 min), which obtained by Fourier transform.

References

- Miyoshi, M., Shen, Z.-Q., Oyama, T., Takahashi, R., Kato, Y.: 2011, *PASJ*, 63, 1093-1116.
- [2] Kato, Y., Miyoshi, M., Takahashi, R., Negoro, H., Matsumoto, R.: 2010, MNRAS, 402, L74-L78.
- [3] Miyoshi, M.: 2008, PASJ, 60, 1371-1386.