Latest model calculation of big bang nucleosynthesis catalyzed by a long-lived massive particle

KUSAKABE, Motohiko (University of Tokyo) YOSHIDA, Takashi (University of Tokyo)

In standard big bang nucleosynthesis (BBN) with the baryon-to-photon ratio inferred from WMAP, ⁷Li is produced mostly as ⁷Be (Fig. 1a, dashed lines). Subsequently, ⁷Be is transformed into ⁷Li by electron capture. A problem of standard BBN is a discrepancy between the predicted and observed abundances of ^(6 and) ⁷Li[1]. One of solutions is catalysis reactions by negatively charged massive particles X-s[2]. We solve numerically the nonequilibrium nuclear and chemical reaction network for this X--catalyzed BBN[2] with improved reaction rates derived from rigorous quantum many-body calculations[3]. We adopt all of their rates, and choose their ⁷Be_X(p, γ)⁸B_X rate for an infinite X- mass case.

Figure 1 shows a result of BBN calculation[4]. The X^- particles recombine with ⁷Be at $T_9 \sim 0.5$. The ⁷Be_X (Fig. 1b) is then destroyed by the ⁷Be_X(p, γ)⁸B_X reaction, primarily through the atomic excited state of ⁸B_X[5], and secondarily through the atomic ground state ⁸B^{*}(1⁺, 0.770 MeV)_X composed of the ⁸B^{*}(1⁺, 0.770 MeV) nuclear excited state and an X^- [6]. At $T_9 \sim 0.1$, the X^- particles bind to ⁴He. Then, the reaction ⁴He_X(d, X^-)⁶Li operates, and ⁶Li and ⁶Li_X (after the recombination) are produced. Neutral X-nuclei, i.e., p_X , d_X , and t_X , mainly react with ⁴He nuclei to lose their X^- s leaving ⁴He_X. The abundances are, therefore, kept low. Their nuclear reactions are thus not important.

The ${}^{8}\text{Be}_{X}(p,\gamma){}^{9}\text{B}_{X}$ reaction through the ${}^{9}\text{B}_{X}^{*a}$ atomic excited state is weak because its resonance energy is large [3]. The resonant ${}^{8}\text{Be}_{X}(n, X^{-}){}^{9}\text{Be}_{X}$ reaction through the state ${}^{9}\text{Be}^{*}(1/2^{+}, 1.684 \text{ MeV})_{X}$ is not likely to operate since the state is estimated to be not a resonance but a bound state located below the ${}^{8}\text{Be}_{X}+n$ threshold[3].

We assume that the present cold dark matter (DM) was partly produced by the decay of X^{\pm} particles, i.e., $Y_{\text{DM}} \ge Y_X$. Using the WMAP-CMB constraint on the cold DM density and the X^- abundance needed for a solution to the Li problems, a limit on the mass m_{DM} is derived. Comparing this mass to the suggested allowed region, e.g., $40 \text{ GeV} < m_{\text{DM}} < 200 \text{ GeV}$ from the CDMS experiment, implies that only an X^- particle which decays via the weak interaction can have existed with sufficient abundance to reduce the ⁷Li produced in BBN (see Fig. 6 of [2] for this case).

In this revised model there is no signature in the abundances of nuclei heavier than Be. We predict that the primordial ⁹Be abundance in the allowed parameter region is negligible, ⁹Be/H < $O(10^{-25})$, and far less

KAJINO, Toshitaka (NAOJ/University of Tokyo)

MATHEWS, Grant J. (University of Notre Dame)

than the most stringent upper limit of ${}^{9}\text{Be}/\text{H} < 10^{-14}$ [7]. ${}^{9}\text{Be}_X$ is destroyed through the process ${}^{9}\text{Be}_X(p, {}^{6}\text{Li}){}^{4}\text{He}_X$ [2]. Another isobar, i.e., ${}^{9}\text{B}_X$ can be produced without experiencing the decays. The decay of the X^- , however, induces reactions ${}^{9}\text{B}_X \rightarrow p + {}^{8}\text{Be} + (\text{decay products})$ since the ${}^{9}\text{B}$ is unstable to the proton decay. The ${}^{9}\text{Be}$ production through ${}^{9}\text{B}_X$ is, thus, not possible

Figure 1: Abundances of normal (a) and *X*-nuclides (b) as a function of temperature $T_9 \equiv T/(10^9 \text{ K})$. The parameters are the abundance ratio of *X* to baryon $Y_X \equiv n_X/n_b = 0.05$ and the lifetime $\tau_X = \infty$. This is reprinted from[1].

References

- [1] Aoki, W., et al.: 2009, *ApJ*, **698**, 1803.
- [2] Kusakabe, M., et al.: 2008, ApJ, 680, 846.
- [3] Kamimura, M., et al.: 2009, Prog. Theor. Phys., 121, 1059.
- [4] Kusakabe, M., et al.: 2010, Phys. Rev. D, 81, 083521.
- [5] Bird, C., et al.: 2008, Phys. Rev. D, 78, 083010.
- [6] Kusakabe, M., et al.: 2007, Phys. Rev. D, 76, 121302.
- [7] Ito, H., et al.: 2009, ApJ, 698, L37.