気球観測用太陽姿勢センサーの開発と飛翔結果

田村友範,小林 研*,常田佐久,久保雅仁*,勝川行雄*

(2002年3月31日受理)

Development and Flight Performance of the Sun Sensor for Balloon Observation

Tomonori TAMURA, Ken KOBAYASHI^{*}, Saku TSUNETA, Masahito KUBO^{*}, and Yukio KATSUKAWA^{*}

Abstract

We developed a sun-sensor for the balloon mission to observe solar flare hard x-ray spectra using CdTe detectors. The sensor utilizes a position-sensitive detector (PSD) with a pinhole, and has 60 degrees \times 60 degrees field-of-view with a 1 degree resolution. The sun-sensor operated nominally during the two flights. We report the design, ground calibration, and flight performance.

1. はじめに

気球に搭載した観測装置では,飛行中の姿勢を正 確に検出することが観測のために必要とされる.太 陽の天球上における位置は既知なので,太陽方向を 検出すれば,気球搭載望遠鏡の光軸の天球面方向を 知ることができる.我々は,気球搭載用の太陽の方 向を検出するためのセンサー(以下,サンセンサー と呼ぶ)の開発を行った.本センサーは,太陽フレ アの硬 X 線スペクトルを CdTe 検出器によって観 測する実験に使用された.この実験では,2001年 8月29日,2002年5月24日の2度にわたり,宇 宙科学研究所 三陸大気球観測所から気球を放球し, 高度41kmにおいて飛翔観測が行われた.1回目は 飛行中に太陽フレアは起こらなかったが,2回目の 飛行において M1.1 クラスのフレア観測に成功する という結果を収めた^{1,2)}.図1-1,2に装置の全体図, 写真を示す.図1-3に放球前の気球の様子を示す.

今までに気球実験に使用されてきた姿勢制御,検 出用のサンセンサーには,以下のようなものがあ る.(1)二枚の太陽電池を異なる方位角を持つよう に設置し,その出力の差分を見るもの(図2-1).(2) スリットと一次元の Position Sensitive Detector(以 下,PSD と略す)を組み合わせたもの(図2-2).(3) 円筒の底に光量に比例した電流が流れるフォトダイ オードを置いて,太陽の角度によって変化する光量 を測定するもの(図2-3).これらのセンサーはいず れも,今回の観測の以下の要求をすべて満たすこと ができなかった.(1)方位角,仰角の二次元で太陽 方向が検出できる.(2)精度が1度以下である.(3) 視野が ± 30 度以上である.そのため我々は,新た に要求を満たすサンセンサーの開発を行った.こ のサンセンサーは,検出器に二次元 PSD を用いピ ンホールと組み合わせることによって,太陽光の入 射角度を求めるものである.センサーの製作にあ たって,次の4つの項目について検討を行った:1) 飛翔時の光量,2)角度精度,3)飛翔時の温度,4)硬 X線検出器とサンセンサーの光軸の角度ずれ計測. 本論文では,これらの項目の検討及び地上試験,飛 翔観測によって得られた結果について報告を行う.

2. サンセンサーの概要

サンセンサーは,図 3-1のような構成になってお り,検出器の前にピンホールを置いて検出器上のス ポット光の位置を求める.スポット光の位置検出器 として,二次元の PSD(浜松ホトニクス製 S1880) を用いた.二次元 PSDは,フォトダイオードに4 つの電極が付いていて,光電流が電極までの距離に 逆比例して分割され,取り出される.PSDに専用 の信号処理回路(浜松ホトニクス製 C4674)を接 続することによって,X,Y各方向について,PSD の中心を原点としたスポット光の位置(mm)が出力 電圧(V)として得られる.以下の式のように,PSD 中心からのスポット光の距離(出力電圧)x,yとピ ンホールと PSD 受光面の間の距離 l = 8.56 mm か 田 村 友 範・他

図 1-2. 観測装置写真

図 1-3. 放球前の様子

ら太陽光の入射角度 $\theta_x \ \theta_y$ が求められる.

$$\theta_x = \tan^{-1}(x/l) \tag{1}$$

$$\theta_y = \tan^{-1}(y/l) \tag{2}$$

図 2-1. 太陽電池を使用したサンセンサー

図 2-2. 1 次元 PSD を使用したサンセンサー

ピンホールの寸法は,穴径 0.5 mm,厚さ 25 µm である.PSD,信号処理回路は,アルミニウムの筐 体の中に収められている.ピンホールの上には,空 の散乱光がサンセンサーに入射するのをできるだ け減らすために取り付けた散乱光シールドが付い ている(図3-1).散乱光シールドによってサンセン サーの視野は,X,Y各方向ともに±30度に制限さ れている.また,散乱光シールド内は,光の反射を 防ぐために黒いベルベットシートで覆われている. 角度検出精度は,±1度以下を目標として製作した.

気球観測用太陽姿勢センサーの開発と飛翔結果

図 3-1. サンセンサー

図 3-2. サンセンサー写真

図 4-1. 太陽輻射エネルギー波長分布 (大気圏外)

3. 飛翔時の光量予測

3.1 光量の設計値

地上と観測高度 (41 km) での太陽光の光量は大 きく異なり, PSD が正しい角度を出力するために は,入射光量の出力電圧が $1 V \sim 10 V$ の範囲にな ければならない.光量の設計値は以下のように決 まる.太陽輻射エネルギーの波長分布(図 4-1)³⁾と PSD の受光感度(図 4-2)と Schott 製フィルター RG695(図 4-3)の透過率を掛けて合わせて(図 4-4),波長積分すると 176.7 Am^{-2} となる.使用した ピンホールの寸法は $\phi5 \text{ mm}$ である.信号処理回路 では, $100 \text{ k}\Omega$ の抵抗で電流を電圧に変換して出力 田 村 友 範・他

図 6. 光量測定図

している.したがって,光量は 176.7 A m⁻² × π × $(2.5 \text{ mm})^2$ ×100 k Ω = 3.47 V となる.

3.2 実測値による予測

次に,実際使用するサンセンサーを用いて地上に おける太陽の光量を実測し,飛翔時の光量を推定 する⁴⁾.地上測定値から飛翔時の光量を予測するに は,大気による減光を考慮する必要がある.大気透 過率と $F(\theta)$ の値を理化年表(平成15年版,p.153) から引用し,図5-1,図5-2に示す. $F(\theta)$ とは,光 が大気外から地表に到達するまでの経路に沿って の空気量であり,天頂角 θ の関数で天頂($\theta = 0$)に おける値を1とする. $\theta < 60^\circ$ では $F(\theta)$ は近似的 に $1/\cos\theta$ (図5-2実線)に等しい.大気の透過率 Tは天頂角が大きくなるにつれて減少し,天頂角

図 8. 光量の地上測定 (<: 測定値, 実線: 近似式)

 $\theta < 60^{\circ}$ ではaを大気吸収率とすると以下の式で近似できる.

$$T = 1 - a/\cos\theta \tag{3}$$

続いて実測値から光量の予測をする.測定は三鷹 市の国立天文台構内にて行った.測定方法は,三脚 にサンセンサーを載せて,太陽光の入射角度が0度 になる位置で光量を測定し,ペンレコーダーで記録 した.太陽以外の散乱光を減らすために図6のよう にセンサーに黒い筒をつけて行った(視野は21.9 度).図7は測定日(2001年4月4日)の天頂角の 時間変化である.測定日は快晴で雲は見当たらな かった.

地上での光量の測定値を V,大気圏外での光量を V₀とすると大気による減光を補正する式は以下の ようになる.

$$V = V_0(1 - a/\cos\theta) \tag{4}$$

図8は,光量Vの測定値を式(4)で最小二乗フィッ ティングした結果である.近似式は,以下のように なる.

 $V = 3.949 \pm 0.031 \{ 1 - (0.178 \pm 0.008) / \cos \theta \}$ (5)

この結果から大気圏外でのサンセンサーの光量を 示す出力電圧は3.95 V と推定され,設計値(3.47 V) と比較すると0.48 V (12 %)高くなっている.また, 式(4)と光量の設計値から,地上における光量(天頂 角20度)を求めると,3.47×{1-(0.178/cos 20°)} = 2.81 V である.図8から,天頂角20度における地 上の実際の光量は3.20 V なので,設計値より0.39 V (11 %)高い.地上と大気圏外の光量をまとめると, 表1のようになる.設計値より実測値の光量が大 きいのは,実測値には空からサンセンサーに入射す る散乱光成分が含まれているためと考えられる.

4. 角度精度試験

4.1 試験方法

まず,太陽光の入射角度を求めるために使用す る基準となる試験装置(図 9,寸法 150 mm× 110 mm×63.8 mm)を製作した.図9のように方眼 紙の上に直径 70 µm のワイヤーを 2 本張り, ワイ ヤーと方眼紙の間の距離を測る.太陽に向けた時 にワイヤーの交点の方眼紙上に落ちる影の中心か らの距離を測定して試験装置への太陽光の入射角度 を求めた.この試験装置において,方眼紙上の影の 読み取り誤差を 0.2 mm としても角度に換算すると 0.18度(入射角度1度の場合)なので,精度は問題 ない.サンセンサーと試験装置を自由に角度が変 えられる三脚の上に載せて, PSD の光軸 (PSD の 電気的原点とピンホール中心で決まる)と試験装置 の原点(ワイヤー交点と方眼紙原点で決まる)が平 行になるように調整した.これにより,試験装置へ の太陽光の入射角がサンセンサーへの太陽光の入射 角となる.太陽光の入射角度を変えていき,それぞ れの角度におけるサンセンサーの出力値を測定し、 ペンレコーダーに記録した.

表1. 地上及び大気圏外における光量

	設計値 [V]	実測値 [V]	散乱光 [V]
地上	2.81	3.20	0.39 (11 %)
大気圏外	3.47	3.95	0.48 (12 %)

4.2 試験結果

サンセンサーの視野内(± 30 度)の角度で81点 測定した結果を図10に示す.測定日(2001年2月 27日)は快晴だった.太陽光入射角とサンセンサー 出力角度を比較すると,角度によっては誤差が大き い.図11にサンセンサー出力(mm/V)とPSD上 の実際のスポットの原点からの距離(設計値)を示 す.また,図12にサンセンサー出力とその時の角 度誤差を示す.図11,12を見ると,原点からの距 離が長いほど角度誤差が大きくなっている.最大 で約4度の差があり,精度 ± 1 度以下という要求を 満たしていない.しかし,測定値を見ると入射角と サンセンサー出力角度は,X,Y各方向で規則正し くずれている.この角度ずれを生じている原因を特 定して除去する,または測定値の補正ができれば, 精度を上げることが可能である.

図 10. 角度精度試験結果

(+:入射角度, >: 測定值, 01/02/27, 81 点測定)

4.3 誤差要因

サンセンサー出力の誤差は以下の要因によって生 じる.

- 1) PSD の位置検出誤差
- 2) PSD 上の X, Y 軸の回転ずれ
- 3) PSD 保護ガラスによる光の屈折
- 4) 空からの散乱光の入射

1) は, PSD は受光面の端に近い程, 位置検出に歪 みがあり誤差を生じる.しかし,これは1度という 精度に対しては十分小さい誤差なので無視できる. 2), 3) も検出出力誤差(~4度)と比べて十分小さ く,無視できる.これらの中で最も大きな誤差を生 じているのは,4)の空からの散乱光と推定された. 空の散乱光が誤差を生じる原因は,PSD が背景光 の影響を受けることにある.PSD上の光スポット 位置は,以下の式によって求められる.PSDの4つ の電極から得られる出力信号を $X_1, X_2, Y_1, Y_2,$ 光 スポットのX,Y各方向の原点からの距離をx, y受光面長をL = 12 mm とする.

$$x = (L/2) \times \{ (X_2 + Y_1) - (X_1 + Y_2) \\ \div (X_1 + X_2 + Y_1 + Y_2) \}$$
(6)

$$y = (L/2) \times \{ (X_2 + Y_2) - (X_1 + Y_1) \\ \div (X_1 + X_2 + Y_1 + Y_2) \}$$
(7)

式(6),(7)を見ると,4つの電極の出力信号に含 まれる各散乱光成分は,分子では差を取っている ので相殺される.しかし,分母(全光量)の散乱光 成分は残るため,出力値は実際のスポット位置より も原点方向にずれることになる.全光量(散乱光成 分を含む)がスポット位置によらないとすると,式 (6),(7)より実際のスポット位置とPSD出力値の 差は原点からの距離に比例して大きくなる.スポッ

ト位置は式(1),(2)によって入射角度に変換される ので,入射角度が大きいほど散乱光による誤差も大 きくなる.

表1から,地上における全光量に含まれる散乱光 成分を11%として,散乱光成分を除去した光量を 式に代入して,図10の角度を補正した値を図13に 示す.結果は散乱光を除くことによって,入射角度 とほぼ一致した.

他に空の散乱光が主な誤差要因と推定する理由 は、屋内でサンセンサーの視野端(±30度)から レーザー光を入射した場合,出力角度は設計値通り であり、屋外で太陽光を入射した場合のような誤差 (~4度)は生じないことによる.

空の散乱光入射を減少させる対策として,短波長 側をカットするフィルターを取り付ける,観測に 必要な視野以外は見えないように遮蔽する(散乱 光シールド)などしたが,あまり効果は見られな かった.

4.4 角度誤差の補正方法

飛翔中の正しい太陽方向を精度よく得るために, サンセンサーの観測値を補正することを検討した. 気球の飛翔時にサンセンサーの出力値に対する真の 太陽光入射角度が1点でも分かれば,出力値を真の 値に補正するための補正式を求めることが可能であ る.そのためにサンセンサーの視野端を利用する. 気球に吊るされた観測装置は,上空にて方位角回り に回転することができる.太陽がサンセンサーの 視野から外れると,光量は0になる.光量が半分に なる角度が±30度となるように視野(散乱光シー ルド)を製作すれば,入射角±30度の点を正確に 知ることができる.

この補正方法で補正した角度が±1度以下の精度 を満たすかどうか地上において試験を行った.測 定日(2001年4月3日)は快晴だった.試験結果 を図14に示す.図14の で囲んだ点以外は,入射 角度と補正角度の差が±1度以下である.この結果 から補正によって,視野の四隅以外では,目標精度 を満たすことが確認できた.

5. 飛翔時の温度予測

5.1 サンセンサーの熱制御

サンセンサーの飛翔時の温度が動作温度範囲内で あるかどうか予測温度を計算した.太陽光の吸収, 地球からの放射,遮光板の反射光の吸収の和が熱放 射とつりあってサンセンサーが熱平衡状態にある として,

(+:入射角度,◇:補正値,01/04/03,40点測定)

$$A_1 S \alpha_1 + A_3 S \alpha_2 + (A_2 \sigma \varepsilon_1 T_1^4)/2 + A_1 R \alpha_1$$

= $A_2 \sigma \varepsilon_1 T_2^4 + A_3 \sigma \varepsilon_2 T_2^4$ (8)

(A_1 :センサー投影面積 = 12276 mm², A_2 :セン サー表面積 = 44039 mm², A_3 :反射防止シート面 積 = 635 mm²,S:太陽定数 = 0.137 W cm⁻²,R: 遮光版の反射光 = 0.0604 W cm⁻², α_1 : Al 蒸着カ プトンフィルム太陽光吸収率 = 0.32, ε_1 :フィル ム放射率 = 0.65, α_2 :反射防止シート太陽光吸収 率 = 0.97, ε_2 :反射防止シート放射率 = 0.97, σ : ステファンボルツマン定数 5.67×10⁻⁸ W m⁻² K⁴, T_1 :地上温度 300 K, T_2 :サンセンサー温度)

サンセンサーの動作温度は,PSD が-10~+60度 C,信号処理回路が0~+50度Cである.センサー 外表面の熱光学特性の調整により飛翔時の予測温度 を動作温度の中央付近に持ってくるため,センサー 外表面は全てアルミ蒸着カプトンフィルム(25μ m/Al,太陽光吸収率 $\alpha = 0.32$,放射率 $\varepsilon = 0.65$) で覆うことにした.この場合,式(8)よりサンセン サーの予測温度は+36度Cとなる.

5.2 温度試験

サンセンサーは,気球上昇及び観測時に -40~ +36度Cの温度になると予想された.一方,回路 に使用した電気部品は民生品であり,低温側の温度 範囲は0度Cであった.このためサンセンサーの 通電状態での温度サイクル試験を行った.恒温槽 の中にサンセンサーを入れて温度を変化させ,試 験後にサンセンサーにレーザー光(波長 632.8 nm) を入射して光量,角度出力に異常がないか調べる. 試験中のサンセンサーの温度変化は,+20度C -42度C(40分) +47度C(40分) +25度C である.試験後,光量,角度出力に異常は見られ なかった.この結果から試験した範囲の温度変動に

図 15. 硬 X 線検出器(正面)

よって信号処理回路などが故障することはないこ とが確認された.

6. 硬 X 線検出器とサンセンサーの光軸の角度ず れ計測

観測データの解析に最終的に必要なのは,硬X線 検出器(図15)を基準とした太陽方向であり,サ ンセンサーで検出した太陽角を変換してやる必要 がある.このためには,硬X線検出器とサンセン サーの光軸の角度ずれを計測する必要がある.計 測方法は,以下の通りである.

(1) 硬X線検出器の光軸を測定する.

検出器の光軸を代表するものとして,検出器のコ リメーター脇にミラーを接着する.ミラーの角度 をセオドライト(Elevationは重力を基準,Azimuth は任意の角度を基準とした)で測定する.

(2) サンセンサーの光軸を測定する.

サンセンサーの光軸とは, PSD 上の電気的な原 点とピンホールを結んだ軸である.サンセンサー 筐体の PSD 受光面とほぼ平行な面にミラーを接着 し,ミラーに垂直にレーザーを入れる.レーザー光 線の向きを固定したままレーザー光をピンホールに 入れる.サンセンサーの角度出力からサンセンサー 光軸とミラーの角度ずれを求める.ミラーの角度を

図 16-3. 光量 (2001/08/29)

セオドライト(Elevation は重力を基準, Azimuth は 任意の角度を基準とした)で測定し, (1)の検出器 のミラーとの相対角を求める.

(1), (2) から,硬X線検出器とサンセンサーの光 軸の角度ずれを求めることができる.実際の角度 ずれは,X:0.28度,Y:0.20度(第1回飛行時) と微量であった.

7. 飛翔観測

7.1 観測結果

図16に2001年8月29日,図17に2002年5月 24日の観測結果を示す.2回ともに飛行中のサンセ ンサーは正常に動作して,観測データの取得に成功 した.1度目の飛翔実験では,9時頃に気球が観測 高度に達して姿勢制御を開始すると,図16-3に示 すように光量がほぼ一定値に落ち着き,太陽がサン センサーに常に入射した状態にあることがわかる. 太陽角度は,図16-1,2のように光量が安定してか らは正常に出力されている.X方向の角度が±方 向に揺れているのは,気球にロープで吊られたゴン ドラが回転するのを太陽方向に向くように制御し ていることによる.Y方向で角度の揺れがないのは ゴンドラが上下方向に安定していることを示してい

る.気球の上昇中(9時まで)は姿勢制御を行って いないので,観測装置を載せたゴンドラはゆっくり 回転している.そのため9時より前の時間は,正し い太陽角度が検出されていない.飛翔中の温度は, 図16-4のように気球が上昇中に最低で-40度Cま で下がり,観測中は60度Cまで上昇した.

2度目の飛翔実験では,8時40分頃に姿勢制御を 開始して,その後図17-1,2,3に示すように角度, 光量は正常に観測された.図17でも姿勢制御開始 (8時40分)前は,気球上昇中のため正しい太陽角 度は検出されていない.10時から13時頃の時間帯 は,サンセンサーは気球を通して太陽を見ているの で,その間光量は減少している.温度は,図17-4 に示すように太陽が気球に隠れている間は20~30 度 C だが,直接太陽を見ている時は60度 C 程度 だった.

7.2 観測結果の考察

(1) 角度補正

太陽がサンセンサーの視野 ±30 度(第1回飛翔 時は,±29度)を外れると光量が0になることを利 用して,飛翔時の視野端での角度測定値を用いた角 度補正を行う.この補正方法は,地上試験において

入射角度と比較して ±1 度以下の精度が出ることが 確認されている.

以下に第1回飛行の補正結果を示す.視野端 X=29 度 (光量が半分になる角度)の時の観測電 $圧値 <math>X_k = 5.11 V$, $Y_k = 1.36 V$ (at 9:00:04)を補 正に使用する.この時の視野端における真の値を X_s , Y_s とする.光が視野端(29度)に入射した時 の出力電圧の設計値は $X_s = 5.63 V$ であり,視野端 にレーザー光を入射して,設計通りであることを確 認している. Y_s の値は不明なので, $Y_s = Y_k$ とす る.出力値は,PSD中心を原点として V/mm なの で,PSD中心からの距離(Rt =補正値,R =観測 値)を用いて補正式を求めると以下のようになる. 補正した結果を図 18 に示す.

$$Rt = \{(X_s V)^2 + (Y_s V)^2)\}^{1/2} / \{(X_k V)^2 + (Y_k V)^2)\}^{1/2} \times R$$

$$= (5.63 V^2 + 1.36 V^2)^{1/2} / (5.11 V^2 + 1.36 V^2)^{1/2} \times R = 1.08 \times R$$
(9)

第2回飛行についても,同様の補正を行った.補 正式(10)と補正結果を図19に示す.

$$Rt = 1.07 \times R \tag{10}$$

飛行中に視野端で観測された角度は,地上試験の時の角度とほぼ同じ値だった.したがって,気球に 搭載した高度41kmにおける散乱光量と地上試験時の散乱光量は,ほぼ同じ程度と言うことができる.

(2) 光量

第1回飛行の光量の予測値は、3.95 V であり、飛 行時の最大値は 3.83 V だった.第2回飛行の設計 値(地上測定による予測は、時間がなくてできな かった)は 4.0 V であり、飛行時の最大値は 4.4 V だった.2回ともほぼ予測通りであり、飛行中はサ ンセンサーの動作に適した光量を得ることができ た.第2回飛行で太陽が気球に隠れている間も光 量は落ちたが、角度の値を見る限り正常に動作して いたと思われる.

(3) 温度

サンセンサーの予測温度は 36 度 C だったが,飛行中の温度は 60 度 C まで上がってしまった.第1 回飛行時には,温度センサーが遮光板の反射光が直 接当たる位置に貼り付けあったので,温度センサー 自身の温度だけ上昇していたのではないかと推測 した.そして第2回飛行時には,筐体の中に温度セ

ンサーを入れたが , 結果は変わらなかった . これは 熱計算に考慮されていない要素があるということで あり , サンセンサーはガラスエポキシ板の上に載っ

ていたので,ガラスエポキシの温度が高くなり,サ

ンセンサーの温度を上昇させた可能性がある.

8. まとめ

飛翔観測において,サンセンサーは正常に動作し, 硬X線観測装置に対する太陽の位置を検出するという目的を果たすことができた.角度精度に関しては,散乱光によると推定された誤差を補正することによって,±1度以下という目標を達成した.飛翔時の光量は,予測に間違いがあると全く測定できなくなるという可能性があったが,予測通りの結果であった.温度については,予測よりかなり高温になってしまった.センサーの動作には影響がなかったが,原因は特定できておらず課題を残した.本センサーは,簡素な構造ながら,2次元,広視野,比較的高い姿勢決定精度を持っている.目的に応じて視野と精度(角度分解能)をある程度変更可能であり,広範囲の気球ミッションに使用可能である.

謝 辞

気球観測にあたり,お世話になりました宇宙科学 研究所山上隆正氏,斎藤芳隆氏,太田茂雄氏に感 謝の意を表します.

参考文献

- K. Kobayashi, S. Tsuneta, T. Tamura, K. Kumagai, Y. Katsukawa, M. Kubo, T. Yamagami, Y. Saitoh, K. Mori: Observation of solar flare hard x-ray spectra using CdTe detectors, 34th COSPAR Scientific Assembly, October 2002.
- K. Kobayashi, S. Tsuneta, T. Tamura, K. Kumagai, Y. Katsukawa, M. Kubo, T. Yamagami, Y. Saitoh: Balloon-borne Hard X-ray Spectrometer for Flare Observation, SPIE Conference on Astronomical Telescope and Instrumentation, August 2002.
- C. W. Allen: Astrophysics Quantities, Springer Verlag, (1973).
- 4) 常田佐久,坂尾太郎,原 弘久,清水敏文, 鹿野良平,吉田 剛,永田伸一,小杉健郎:
 S-520 CN-22 XUV Doppler Telescope 詳細 設計検討書,ロケット通信 第2号,国立 天文台 (1997).